Adam优化算法

Adam Optimization Algorithm.

Adam refer to Adaptive Moment estimation.

要看懂这篇博文,你需要先看懂:

  • 指数加权平均
  • 使用动量的梯度下降法
  • RMSprop

整理并翻译自吴恩达深度学习系列视频:
https://mooc.study.163.com/learn/2001281003?tid=2001391036#/learn/content?type=detail&id=2001701052&cid=2001694315

RMSprop and the Adam optimization algorithm, is one of those rare algorithms that has really stood up, and has been shown to work well across a wide range of deep learning architectures.
And the Adam optimization algorithm is basically taking momentum and RMSprop and putting them together.

Adam优化算法

基本思想是把动量梯度下降RMSprop放在一起使用。

算法描述

这个算法描述来自花书《deep learning》,与下面的计算公式不共享参数记号。
Adam优化算法_第1张图片

Adam优化算法计算方法

动量梯度下降部分:
v d w = β 1 v d w + ( 1 − β 1 ) d W v_{dw}=\beta_1 v_{dw}+(1-\beta_1)dW vdw=β1vdw+(1β1)dW 即指数加权平均,下同。
v d b = β 1 v d b + ( 1 − β 1 ) d b v_{db}=\beta_1 v_{db}+(1-\beta_1)db vdb=β1vdb+(1β1)db

RMSprop部分:
S d w = β 2 S d w + ( 1 − β 2 ) d W 2 S_{dw}=\beta_2S_{dw}+(1-\beta_2)dW^2 Sdw=β2Sdw+(1β2)dW2<- element-wise 即平方版本的指数加权平均,下同
S d b = β 2 S d b + ( 1 − β 2 ) d b 2 S_{db}=\beta_2S_{db}+(1-\beta_2)db^2 Sdb=β2Sdb+(1β2)db2 <- element-wise

起始bias修正:
v d w c o r r e c t = v d w 1 − β 1 t v_{dw}^{correct}=\frac{v_{dw}}{1-\beta_1^t} vdwcorrect=1β1tvdw
v d b c o r r e c t = v d b 1 − β 1 t v_{db}^{correct}=\frac{v_{db}}{1-\beta_1^t} vdbcorrect=1β1tvdb
S d w c o r r e c t = S d w 1 − β 2 t S_{dw}^{correct}=\frac{S_{dw}}{1-\beta_2^t} Sdwcorrect=1β2tSdw
S d b c o r r e c t = S d b 1 − β 2 t S_{db}^{correct}=\frac{S_{db}}{1-\beta_2^t} Sdbcorrect=1β2tSdb

更新parameter变成:
W = W − α v d w c o r r e c t ∗ d W S d w c o r r e c t + ϵ W = W-\alpha \frac{v_{dw}^{correct}*dW}{\sqrt{S_{dw}^{correct}+\epsilon}} W=WαSdwcorrect+ϵ vdwcorrectdW 分子来自动量梯度下降 分母来自RMSprop 下同
b = b − α v d b c o r r e c t ∗ d b S d b c o r r e c t + ϵ b = b-\alpha \frac{v_{db}^{correct}*db}{\sqrt{S_{db}^{correct}+\epsilon}} b=bαSdbcorrect+ϵ vdbcorrectdb

解释说明

Adam = adaptive moment estimation,自适应性炬估计。
β 1 \beta_1 β1计算的是导数的均值(使用加权指数平均)。这称为第一炬(the first moment)。
β 2 \beta_2 β2计算的是平方版本的指数加权平均。这称为第二炬(the second moment)。

这是Adam名称的由来,大家一般称之为:Adam Authorization Algorithm(Adam权威算法)。

默认参数值选取

  • α \alpha α
    学习速率是你需要是调参的。
  • β 1 = 0.9 \beta_1=0.9 β1=0.9
    -> ( d w ) (dw) (dw) moving average, weighted average. momentum light term.
  • β 2 = 0.999 \beta_2=0.999 β2=0.999 -> d w 2 dw^2 dw2
    -> ( d w 2 ) (dw^2) (dw2) RMSprop term. 0.999出自Adam paper,即该算法提出者。
  • ϵ = 1 0 − 8 \epsilon=10^{-8} ϵ=108
    几乎没有人去调试这个值,大家都使用 1 0 − 8 10^{-8} 108

你可能感兴趣的:(深度学习与机器学习)