Lambda表达式(也称闭包),是Java8中最受期待和欢迎的新特性之一。在Java语法层面Lambda表达式允许函数作为一个方法的参数(函数作为参数传递到方法中),或者把代码看成数据。Lambda表达式可以简化函数式接口的使用。函数式接口就是一个只具有一个抽象方法的普通接口,像这样的接口就可以使用Lambda表达式来简化代码的编写。
对应接口有且只有一个抽象方法!!!
Lambda 表达式的基础语法:Java8中引入了一个新的操作符 “->” 该操作符称为箭头操作符或 Lambda 操作符
箭头操作符将 Lambda 表达式拆分成两部分:
左侧:Lambda 表达式的参数列表
右侧:Lambda 表达式中所需执行的功能, 即 Lambda 体
(args1, args2...) -> {};
可选类型声明:不需要声明参数类型,编译器可以统一识别参数值。
可选的参数圆括号:一个参数无需定义圆括号,但多个参数需要定义圆括号。
可选的大括号:如果主体包含了一个语句,就不需要使用大括号。
可选的返回关键字:如果主体只有一个表达式返回值则编译器会自动返回值,大括号需要指定明表达式返回了一个数值。
优点
使用Lambda表达式可以简化接口匿名内部类的使用,可以减少类文件的生成,可能是未来编程的一种趋势。
缺点
使用Lambda表达式会减弱代码的可读性,而且Lambda表达式的使用局限性比较强,只能适用于接口只有一个抽象方法时使用,不宜调试。
public class Demo01 {
public static void main(String[] args) {
// 1.传统方式 需要new接口的实现类来完成对接口的调用
ICar car1 = new IcarImpl();
car1.drive();
// 2.匿名内部类使用
ICar car2 = new ICar() {
@Override
public void drive() {
System.out.println("Drive BMW");
}
};
car2.drive();
// 3.无参无返回Lambda表达式
ICar car3 = () -> {System.out.println("Drive Audi");};
car3.drive();
// 4.无参无返回且只有一行实现时可以去掉{}让Lambda更简洁
ICar car4 = () -> System.out.println("Drive Ferrari");
car4.drive();
// 去查看编译后的class文件 大家可以发现 使用传统方式或匿名内部类都会生成额外的class文件,而Lambda不会
}
}
interface ICar {
void drive();
}
class IcarImpl implements ICar {
@Override
public void drive() {
System.out.println("Drive Benz");
}
}
public class Demo02 {
public static void main(String[] args) {
// 1.有参无返回
IEat eat1 = (String thing) -> System.out.println("eat " + thing);
eat1.eat("apple");
// 参数数据类型可以省略
IEat eat2 = (thing) -> System.out.println("eat " + thing);
eat2.eat("banana");
// 2.多个参数
ISpeak speak1 = (who, content) -> System.out.println(who + " talk " + content);
speak1.talk("John", "hello word");
// 3.返回值
IRun run1 = () -> {
return 10;
};
run1.run();
// 4.返回值简写
IRun run2 = () -> 10;
run2.run();
}
}
interface IEat {
void eat(String thing);
}
interface ISpeak {
void talk(String who, String content);
}
interface IRun {
int run();
}
public class Demo03 {
public static void main(String[] args) {
// 全写
IAddition addition1 = (final int a, final int b) -> a + b;
System.out.println(addition1.add(1, 2));
// 简写
IAddition addition2 = (a, b) -> a+b;
System.out.println(addition2.add(2, 3));
}
}
interface IAddition {
int add(final int a, final int b);
}
Java8提供了一个java.util.function包,包含了很多函数式接口,我们来介绍最为基本的4个(为了节省篇幅,去掉了源码中的注释)
@FunctionalInterface
public interface Function<T, R> {
R apply(T t);
default <V> Function<V, R> compose(Function<? super V, ? extends T> before) {
Objects.requireNonNull(before);
return (V v) -> apply(before.apply(v));
}
default <V> Function<T, V> andThen(Function<? super R, ? extends V> after) {
Objects.requireNonNull(after);
return (T t) -> after.apply(apply(t));
}
static <T> Function<T, T> identity() {
return t -> t;
}
}
Function接口的唯一抽象方法是apply,作用是接收一个指定类型的参数,返回一个指定类型的结果
public class FunctionTest1 {
public static void main(String[] args) {
FunctionTest1 ft = new FunctionTest1();
//使用lambda表达式实现apply方法,返回入参+10。形式上如同传递了一个方法作为参数
int res = ft.compute(1, v -> v + 10);
System.out.println(res);//11
}
public int compute(int a, Function<Integer, Integer> function) {
//使用者在使用本方法时,需要去编写自己的apply,
//传递的funtion是一个行为方法,而不是一个值
return function.apply(a);
}
}
默认方法compose作用是传入参数后,首先执行compose方法内的Function的apply方法,然后将其返回值作为本Function方法的入参,调用apply后得到最后返回值
public class FunctionTest2 {
public static void main(String[] args) {
FunctionTest2 ft = new FunctionTest2();
//调用compose
//先+8,然后将得到的值*3
System.out.println(ft.compute(2, v -> v * 3, v -> v + 8));//30
}
public int compute(int a, Function<Integer, Integer> function1, Function<Integer, Integer> function2) {
//将function2先接收入参a,调用apply后,将返回值作为新的入参,传入function1,调用apply返回最后结果
return function1.compose(function2).apply(a);
}
}
默认方法andThen与compose正好相反,先执行本Function的apply,然后将结果作为andThen方法参数内的Function的入参,调用apply后返回最后结果
public class FunctionTest3 {
public static void main(String[] args) {
FunctionTest3 ft = new FunctionTest3();
//调用andThen
//先*3,然后将得到的值+8
System.out.println(ft.compute(2, v -> v * 3, v -> v + 8));//14
}
public int compute(int a, Function<Integer, Integer> function1, Function<Integer, Integer> function2) {
//将function2先接收入参a,调用apply后,将返回值作为新的入参,传入function1,调用apply返回最后结果
return function1.andThen(function2).apply(a);
}
}
静态方法identity的作用是传入啥返回啥,这里就不写例子了
package java.util.function;
import java.util.Objects;
@FunctionalInterface
public interface Consumer<T> {
void accept(T t);
default Consumer<T> andThen(Consumer<? super T> after) {
Objects.requireNonNull(after);
return (T t) -> { accept(t); after.accept(t); };
}
}
Consumer接口中accept方法的作用是接收指定参数类型,无返回值,重点在于内部消费
Consumer<String> consumer = s -> System.out.println("hello " + s);
consumer.accept("mike");// hello mike
默认方法andThen作用是连续消费,从本Consumer开始,从外到内,针对同一入参。
Consumer<String> consumer = s -> System.out.println("hello " + s);
Consumer<String> consumer2 = s -> System.out.println("nice to meet you " + s);
consumer.andThen(consumer2).accept("mike");
//hello mike
//nice to meet you mike
package java.util.function;
import java.util.Objects;
@FunctionalInterface
public interface Predicate<T> {
boolean test(T t);
default Predicate<T> and(Predicate<? super T> other) {
Objects.requireNonNull(other);
return (t) -> test(t) && other.test(t);
}
default Predicate<T> negate() {
return (t) -> !test(t);
}
default Predicate<T> or(Predicate<? super T> other) {
Objects.requireNonNull(other);
return (t) -> test(t) || other.test(t);
}
static <T> Predicate<T> isEqual(Object targetRef) {
return (null == targetRef)
? Objects::isNull
: object -> targetRef.equals(object);
}
}
Predicate中的test方法,传入指定类型参数,返回布尔类型的结果,用于判断,断言
//判断一个数是否是偶数
Predicate<Integer> predicate = b -> n % 2 == 0;
System.out.println(predicate.test(3));//false
默认方法and顾名思义,将本Predicate和and参数中的Predicate对同一入参进行test的结果进行【与】操作。
negate方法对test的结果进行【非】操作
or方法对两个Predicate的test结果进行【或】操作
静态方法isEqual将其入参与test方法的入参进行equals比较
System.out.println(Predicate.isEqual(1).test(1));//true
package java.util.function;
@FunctionalInterface
public interface Supplier<T> {
T get();
}
Supplier意为供应,只有一个方法get,不接收任何参数,只返回指定类型结果
Supplier<String> sup = () -> "hello world";
System.out.println(sup.get());