【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)

二次 贝塞尔曲线 和三次 贝塞尔曲线 使用说明

  • 1. 二次 贝塞尔曲线 和三次 贝塞尔曲线
    • 1.1 贝塞尔曲线的 基本知识
    • 1.2 贝塞尔曲线 生成动图
    • 1.3 HTML 中 画贝塞尔曲线的 2 种方法
    • 1.4 二次 贝塞尔曲线
      • 1.4.1 二次 贝塞尔曲线的创建
      • 1.4.2 二次 贝塞尔曲线的 弯曲处宽窄控制
      • 1.4.3 二次 贝塞尔曲线的 伸缩和平移
      • 1.4.4 二次 贝塞尔曲线 控制点的取值 和弯曲方向
      • 1.4.5 二次 贝塞尔曲线 使用示例
    • 1.5 三次 贝塞尔曲线
      • 1.5.1 三次 贝塞尔曲线的 生成动图和创建
      • 1.5.2 三次 贝塞尔曲线的 起始点
      • 1.5.3 三次 贝塞尔曲线的 弯曲处的 宽窄控制
      • 1.5.4 三次 贝塞尔曲线 弯曲处的 拉伸
      • 1.5.5 三次 贝塞尔曲线的 控制点的 坐标取值

1. 二次 贝塞尔曲线 和三次 贝塞尔曲线

1.1 贝塞尔曲线的 基本知识

  • 贝塞尔曲线的 基本知识
    • 贝塞尔曲线本质: Bézier curve (贝塞尔曲线)= 曲线 = 用于二维图

      • 应用于二维图形应用程序的数学曲线。
    • 曲线定义:起始点、终止点(也称锚点)、控制点。

    • 调整曲线形状: 调整控制点起始点.终点的坐标值 = 调整曲线形状

      • 通过 调整控制点,贝塞尔曲线的形状 会发生变化。
    • 贝塞尔曲线名称由来: 1962年,法国数学家 Pierre Bézier 第一个研究了这种 矢量绘制曲线 的方法,并给出了详细的计算公式,因此按照公式 绘的曲线 就用他的姓氏 来命名.

    • 参考博文

      • 贝塞尔曲线讲解 1
      • 贝塞尔曲线讲解 2 - 数学原理

1.2 贝塞尔曲线 生成动图

  • 贝塞尔曲线 生成动图
    • ① 一阶(一次)贝塞尔曲线( = 线段):
      【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第1张图片
    • ② 二次贝塞尔曲线( = 抛物线)
      【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第2张图片
    • ③ 三次贝塞尔曲线( = 类似抛物线的圆滑曲线)
      【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第3张图片

1.3 HTML 中 画贝塞尔曲线的 2 种方法

  • 画贝塞尔曲线的 2 种方法
    • 二次贝塞尔曲线: = 1个控制点 + 1个结束点
      • 使用 quadraticCurveTo(cp1x, cp1y, x, y)二次 贝塞尔曲线到点 方法
        • quadratic [kwɑ’drætɪk] adj. [数] 二次的
        • 参数: (cp1x,cp1y) = 1个控制点,(x,y) = 1个结束点。
          • cp=control point ,控制点
    • 三次贝塞尔曲线: = 2个控制点 + 1个结束点
      • 使用bezierCurveTo(cp1x, cp1y, cp2x, cp2y, x, y)三次 贝塞尔曲线到点 方法
      • 参数: (cp1x,cp1y) = 控制点一,(cp2x,cp2y) = 为控制点二,(x,y)= 1个结束点。

1.4 二次 贝塞尔曲线

1.4.1 二次 贝塞尔曲线的创建

  • 示例1: 创建 一条简单的 二次贝塞尔曲线
<body>

	<canvas id="myCanvas" height="200px" width="200px" style="border:1px solid green">
		一条 二次 贝塞尔曲线
	canvas>
	
	<script type="text/javascript">
		var canvas=document.getElementById("myCanvas");//获取 canvas 图形画布元素
		if(canvas.getContext){//判断canvas 的获取上下文方法是否存在
			var ctx=canvas.getContext("2d");//获取上下文
			
		//(1) 绘制一条简单的 二次贝塞尔曲线: 1个起点+1个终点+1个控制点		
		ctx.beginPath();
		ctx.moveTo(75,25);
		ctx.quadraticCurveTo(25,25,25,60);
		ctx.stroke();     
		} 
	script>
body>
1 条贝塞尔曲线 起点和终点
【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第4张图片 【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第5张图片
  • 测试
    • 显示曲线: 二次贝塞尔曲线,显示一段 起始点到终点的曲线
    • 曲线弯曲方向: 控制点不会显示出来,曲线弯曲方向,朝向 控制点的坐标位置
      • 改变曲线方向 = 改变 控制点的坐标 (不改变 起始点和终点时)
    • 改变曲线的形状: 改变 起始点,终点,控制点坐标,都可以 改变曲线的形状

  • 示例2: 上方曲线,把控制点坐标 变成(10,10)(100,100),看曲线 弯曲方向的变化

【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第6张图片

  • 测试
    • 弯曲方向:朝向控制点

1.4.2 二次 贝塞尔曲线的 弯曲处宽窄控制

  • 示例1:
    • (二次 贝塞尔曲线) 弯曲处的宽窄控制:控制点坐标 不变,改变 起始点和终点的坐标
      • 弯曲处变宽: = 增加 坐标差 a,b (起始点和终点的坐标差)
        • (假设 起始点和终点之间的坐标差,a=x1-x2,b=y1-y2,两个点,x1,x2之间距离变远,y1和y2之间 距离变远)
        • 改坐标值: 大大小小 (把较大值加大,较小值减小,增加距离)
      • 弯曲处变窄: 缩小 坐标差 a,b (起始点和终点的坐标差)
        • (假设 起始点和终点之间的坐标差,a=x1-x2,b=y1-y2) ,x1和x2之间距离 越来越靠近,y1和y2 之间的距离变近
        • 改坐标值:大小小大 (把较大值减小,较小值加大,减少距离)

<body>

	<canvas id="myCanvas" height="200px" width="200px" style="border:1px solid green">
		一条 二次 贝塞尔曲线
	canvas>
	
	<script type="text/javascript">
		var canvas=document.getElementById("myCanvas");//获取 canvas 图形画布元素
		if(canvas.getContext){//判断canvas 的获取上下文方法是否存在
			var ctx=canvas.getContext("2d");//获取上下文
			
		//(1) 绘制一条简单的 二次贝塞尔曲线: 1个起点+1个终点+1个控制点		
		ctx.beginPath();
		ctx.moveTo(80,50);
		ctx.quadraticCurveTo(15,75,110,100);
		ctx.stroke();     
		} 
	script>
body>

【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第7张图片

  • 测试
    • 一条二次贝塞尔曲线,下面对它进行 变宽和变窄

  • 弯曲处变宽: = 增加 坐标差 a,b (起始点和终点的 x坐标差,y坐标差)
    • 口诀:大大小小 (大大小小 变宽了)
左右变宽: 增大 较大的x横坐标 左右变宽: 减小 较小的x横坐标
【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第8张图片 【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第9张图片
上下变宽: 增大 较大的y横坐标 上下变宽: 减小 较小的y横坐标
【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第10张图片 【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第11张图片

  • 弯曲处变窄: 缩小 坐标差 a,b (起始点和终点的 x坐标差,y坐标差)
    • 口诀:大小小大
左右变窄: 增大 较小的x横坐标 左右变窄: 减小 较大的x横坐标
【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第12张图片 【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第13张图片
上下变窄: 增大 较小的y横坐标 上下变窄: 减小 较大的y横坐标
【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第14张图片 【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第15张图片

1.4.3 二次 贝塞尔曲线的 伸缩和平移

  • 二次 贝塞尔曲线的伸缩: 两点和控制点的坐标差
    • 伸长曲线: 增加 两点和控制点的坐标差 (起始点和终点,和控制点的坐标差)
      • a1=x1-cp1x,a2=x2-cp1x,b1=y1-cp1y,b2=y2-cp1y)
      • (a1,b1)=起始点-控制点
      • (a2,b2)=终点-控制点
    • 缩短曲线:减少 两点和控制点的坐标差
    • 伸缩方向: 伸缩 左右方向,改x,伸缩 上下方向,改y
  • 伸长曲线: 伸长左右方向 和伸长上下方向 = 增加 两点和控制点的坐标差
左右伸长:改起始点 x坐标值 左右伸长:改终点 x坐标值
【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第16张图片 【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第17张图片
上下伸长:改起始点 y坐标值 上下伸长:改终点 y坐标值
【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第18张图片 【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第19张图片

  • 缩短曲线: 缩短左右方向 和缩短上下方向 = 减少 两点和控制点的坐标差
    • 与伸长曲线操作相反,让两点和控制点的 距离变近
左右缩短:改 x坐标值 (起始点和终点) 上下缩短: 改 y坐标值 (起始点和终点)
【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第20张图片 【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第21张图片

  • 二次 贝塞尔曲线的平移
    • 两点的x或y,同时增减相同值 a
      • 左右平移: 改x值,起始点和终点,同时加减 a (y坐标值 保持不动)
      • 上下平移: 改y值,起始点和终点,同时加减 a (x坐标值 保持不动)
    • 总结: 平移的时候,一次 只改x坐标值或是y坐标值 (两个点 一起增减相同值)
左右平移 上下平移
【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第22张图片 【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第23张图片

1.4.4 二次 贝塞尔曲线 控制点的取值 和弯曲方向

  • 二次 贝塞尔曲线 控制点的取值 和弯曲方向
    • 向左右弯曲: 改控制点 x值 (相对于起始点和终点的连线) 起始点(x1,y1),终点(x2,y2),控制点(cp1x,cp1y)
      • 向左弯曲: = 弯曲处 在左边
        • cp1x < min (x1,x2) = 小于 最小x值
      • 向右弯曲: = 弯曲处 在右边
        • cp1x > max(x1.x2) = 大于 最大x值
    • 向上下弯曲: 改控制点 y值
      • 向上弯曲: cp1y < min (y1,y2) = 小于 最小y值
      • 向下弯曲: cp1y > max(y1.y2) 大于最大y值
向左弯曲 向右弯曲
【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第24张图片 【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第25张图片
向上弯曲 向下弯曲
【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第26张图片 【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第27张图片

1.4.5 二次 贝塞尔曲线 使用示例

  • 示例1: 多段 二次 贝塞尔曲线的使用: 添加连续的曲线,让每两条 二次贝塞尔曲线 相连,组成一个 绘画气泡窗口
<body>

	<canvas id="myCanvas" height="200px" width="200px" style="border:1px solid green">
		一个对话气泡图形
	canvas>
	
	<script type="text/javascript">
		var canvas=document.getElementById("myCanvas");//获取 canvas 图形画布元素
		if(canvas.getContext){//判断canvas 的获取上下文方法是否存在
			var ctx=canvas.getContext("2d");//获取上下文
			
			//(1) 绘制 1个对话气泡,6条曲线组成		
			ctx.beginPath();
			ctx.moveTo(75,25);
			ctx.quadraticCurveTo(25,25,25,60);//控制点1 和终点1,1段曲线
            ctx.quadraticCurveTo(20,100,50,100);//控制点2 和终点2,2段曲线
            ctx.quadraticCurveTo(50,125,25,120);//控制点3 和终点3,3段曲线
            ctx.quadraticCurveTo(70,125,68,100);//控制点4 和终点4,4段曲线
            ctx.quadraticCurveTo(165,115,152,50);//控制点5 和终点5,5段曲线
            ctx.quadraticCurveTo(152,20,75,25);//控制点6 和终点6 = 起始点1,6段曲线
		    ctx.stroke();//绘制图形     
		} 
	script>
body>
  • 使用 quadraticCurveTo()二次贝塞尔曲线 到点函数,实现对话气泡的过程
    • 6个函数 = 6条曲线
1条 贝塞尔曲线 ↓ 起点和终点
【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第28张图片 【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第29张图片
2条 贝塞尔曲线 (连接在一起) ↓ 起点和终点
【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第30张图片 【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第31张图片
3条 贝塞尔曲线 ↓ 起点和终点
【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第32张图片 【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第33张图片
4条 贝塞尔曲线 ↓ 起点和终点
【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第34张图片 【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第35张图片
5条 贝塞尔曲线 ↓ 起点和终点
【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第36张图片 【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第37张图片
6 条贝塞尔曲线 (对话气泡)↓ 起点和终点
【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第38张图片 【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第39张图片
  • 测试
    • 绘制过程显示: 在绘制过程中,先把stoke()绘画 方法 写在后面,这样每画一条曲线,都能看见,利于 调整形状
    • 坐标调整: 对于 起始点,终点,控制点的坐标调整
      • 上下移动: 调整 y 值
      • 左右移动: 调整 x 值
      • 控制点相对于 终点和起始点的位置 进行限定
    • 起始点
      • 曲线第1个起始点: 使用 moveTo()移动到点 函数 创建
      • 曲线接下来的起始点: 上一条曲线的终点 = 下一条曲线的起始点
    • 弯曲处: 一条二次贝塞尔曲线,只有一个弯曲方向 = 只有一个弯曲处 (一般看有几个弯曲,就需要用几条曲线)
      • 弯曲处是平滑的: 不平滑的连接处,一般是终点位置,不会是控制点的坐标
      • 曲线弯曲方向: 朝向 控制点的坐标
      • 曲线的数目: = quadraticCurveTo()二次赛贝尔曲线到点 方法的使用数目

  • 示例2: 对话气泡,6个弯曲处,所以用函数表示时,6个弯曲处 = 6条曲线 = 6个quadraticCurveTo()函数
    【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第40张图片

  • 示例3: 用二次贝塞尔曲线 画一个心形
<body>

	<canvas id="myCanvas" height="200px" width="200px" style="border:1px solid green">
		心形
	canvas>
	
	<script type="text/javascript">
		var canvas=document.getElementById("myCanvas");//获取 canvas 图形画布元素
		if(canvas.getContext){//判断canvas 的获取上下文方法是否存在
			var ctx=canvas.getContext("2d");//获取上下文
			
			//(1) 绘制 一个心形	
			ctx.beginPath();
			ctx.moveTo(80,80);
			
			ctx.quadraticCurveTo(22,40,35,100);//控制点1 和终点1,1段曲线
			ctx.quadraticCurveTo(42,122,80,140);//控制点2 和终点2,2段曲线
			ctx.quadraticCurveTo(120,122,122,100);//控制点3 和终点3,3段曲线			
			ctx.quadraticCurveTo(140,40,80,80);//控制点4 和终点4,4段曲线	
			
		    ctx.stroke();//绘制图形     
		} 
	script>
body>
  • 用 2条曲线和 4条曲线 绘制出心形
    • 多两条曲线,多弯曲度的调整,更精细些
2条 二次贝塞尔曲线 (心形♡) ↓ 起始点和终点
【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第41张图片 【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第42张图片
4条 二次贝塞尔曲线 (心形♡) ↓ 起始点和终点
【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第43张图片 【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第44张图片
  • 测试
    • 弯曲度调整: 适当增加 曲线数目,有利于调整 图形的弯曲度

  • 示例4: 把描边心形,变成填充心形
    • ctx.stroke()绘制方法 换成 ctx.fill()填充方法,会自动填充成 黑色
      【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第45张图片

1.5 三次 贝塞尔曲线

1.5.1 三次 贝塞尔曲线的 生成动图和创建

  • 三次贝塞尔曲线 形成动图
    【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第46张图片
  • 示例1: 一条 三次贝塞尔曲线
<body>

	<canvas id="myCanvas" height="200px" width="200px" style="border:1px solid green">
		一条 三次贝塞尔曲线
	canvas>
	
	<script type="text/javascript">
		var canvas=document.getElementById("myCanvas");//获取 canvas 图形画布元素
		if(canvas.getContext){//判断canvas 的获取上下文方法是否存在
			var ctx=canvas.getContext("2d");//获取上下文
			
			//(1) 绘制 一条三次贝塞尔曲线
			ctx.beginPath();
			ctx.moveTo(80,80);
			ctx.bezierCurveTo(60,30,40,80,80,100);
		    ctx.stroke();//绘制图形     
		} 
	script>
body>
1条 三次贝塞尔曲线 起始点,终点和控制点 起始点,终点和控制点 连线
【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第47张图片 【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第48张图片 【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第49张图片

  • 示例2: 用 2条 三次贝塞尔曲线,画 1个描边心形
<body>

	<canvas id="myCanvas" height="200px" width="200px" style="border:1px solid green">
		心形
	canvas>
	
	<script type="text/javascript">
		var canvas=document.getElementById("myCanvas");//获取 canvas 图形画布元素
		if(canvas.getContext){//判断canvas 的获取上下文方法是否存在
			var ctx=canvas.getContext("2d");//获取上下文
			
			//(1) 绘制 一个心形	
			ctx.beginPath();
			ctx.moveTo(80,75);
			ctx.bezierCurveTo(60,35,25,80,80,100);
			ctx.bezierCurveTo(140,65,85,40,80,75);
				
		    ctx.stroke();//绘制图形     
		} 
	script>
body>
2条 三次贝塞尔曲线 (心形) 起始点和终点
【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第50张图片 【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第51张图片

1.5.2 三次 贝塞尔曲线的 起始点

  • 三次 贝塞尔曲线的 起始点
    • 第一条曲线的起始点: 用moveTo()移动到点 方法设置的起始点
    • 接下来的起始点: = 前一条曲线的终点 = 下一条曲线的起始点

1.5.3 三次 贝塞尔曲线的 弯曲处的 宽窄控制

  • 弯曲处的宽窄: 改 2 控制点的坐标差,增大或缩小
    • = 控制点之间的 x 坐标差和 y 坐标差(横坐标和纵坐标)
    • 曲线 弯曲处变窄: = 缩小 控制点坐标差
      • 两个 x 横坐标值 越接近( cp1x-cp2x ) = 两个 y 纵坐标值 越接近( cp1y-cp2y ) = 曲线 弯曲处的两条边 之间的距离越小
      • 缩小 控制点坐标差的 方法: 较小坐标变大,较大坐标变小,缩短距离 = 2个坐标值 距离越来越接近
        • 改变x值,左右变窄
        • 改变y值,上下变窄
    • 曲线 弯曲处变宽: = 增大 控制点坐标差 = 2 个坐标值 距离越来越远

  • 把弯曲处 变宽或变窄 的示例说明

  • 示例1: 把弯曲处 变窄 = 减少 坐标差 (控制点的x,y值)

    • 减变窄:大小小大(大的变小,小的变大) = 2 个值 越来越接近
    • 左右变窄 = 减少 控制点 x横坐标差:把 第一条 三次贝塞尔曲线的(控制点1 和控制点2 之间的) x 横坐标差缩小(通过增大 较小x坐标值,或者减小较大的x坐标值,两个越来越接近)
    • 上下变窄 = 减少 控制点的 y纵坐标差:把 第一条 三次贝塞尔曲线的(控制点1 和 控制点2 之间的) y 纵坐标差缩小(通过增大 较小 y坐标值,减小较大的 y坐标值)
左右变窄: 大小= 增大 较小的 x坐标值 左右变窄: 小大= 减小 较大的 x的坐标值
【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第52张图片 【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第53张图片
上下变窄: 大小= 增大 较小的 y坐标值 上下变窄: 小大= 减小 较大的 y坐标值
【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第54张图片 【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第55张图片

  • 示例2: 把弯曲处 变宽 = 增加 坐标差 (控制点的x,y值)

    • 变宽: = 增加坐标差= 大大小小(大的变大,小的变小)
    • 下方图片,每次增减10px,增减几次
左右变宽: 大大= 增大 较大的 x坐标值 左右变宽: 小小= 减小 较小的 x的坐标值
【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第56张图片 【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第57张图片
上下变宽: 大大= 增大 较大的 y坐标值 上下变窄: 小小= 减小 较小的 y坐标值
【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第58张图片 【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第59张图片

1.5.4 三次 贝塞尔曲线 弯曲处的 拉伸

  • 曲线 弯曲处拉伸: = 2 控制点,同时改x值,或y值,改的值相同
    • = (改的值相同,坐标差不变)
    • 曲线 弯曲处 向左右拉伸: = 2 个控制点 同时改 x值,改的值相同,y 值不动
      • 2 个控制点的纵坐标不变
        • (纵坐标改变,会改变上下拉伸)
      • 横坐标差 也不变
        • (坐标差改变 会改变弯曲处的宽窄度)
      • 把 cp1x 和 cp2x 横坐标减少 a (同时减少相同值 a)
    • 曲线 弯曲处 向上下拉伸: 2个控制点 同时改y值,改的值相同,x值不动
      • 保持坐标差不变(不从控制点上改变宽窄),拉伸宽窄改变= 由和起始点终点之间的相对距离改变
    • 总结:
      • 弯曲处宽窄 = 增减 2 个控制点的 坐标差
        • (变窄= 减坐标差,变宽= 增坐标差 )
      • 弯曲处拉伸 = 同时改2个控制点的x值,或y值, 改的值相同.(一次 只改 2 个 x值,或只改 2 个y值)
      • 宽窄和拉伸 方向: 左右:改 x,上下: 改 y值

  • ⑵ 三次 贝塞尔曲线的弯曲处 上下左右拉伸 的示例

  • 示例1:左右 上下 拉伸图形

    • 曲线 弯曲处 向左右拉伸: = 同时增减 2个x 值,改的值都为 a ,y值不动.
    • 曲线 弯曲处 向上下拉伸: = 同时增减 2个y 值,改的值都为 a ,y值不动.
向左拉伸: cp1x,cp2x 同时减 a(坐标差不变) 向右拉伸: cp1x,cp2x 同时加 a(坐标差不变)
【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第60张图片 【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第61张图片
向上拉伸: cp1y,cp2y 同时减 a(坐标差不变) 向下拉伸: cp1y,cp2y 同时加 a(坐标差不变)
【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第62张图片 【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第63张图片

  • 曲线 左右拉伸 和控制线段 的关系:
    • 控制线段的左右平移 = 保持纵坐标不变,横坐标差也不变,横坐标同时增减 a(针对2个控制点) = 控制点P0,P1之间的线段,向左右平移 a 距离
控制线段P0P1 向左平移 = 同时减少横坐标(纵坐标不变减少相同量a)
【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第64张图片

1.5.5 三次 贝塞尔曲线的 控制点的 坐标取值

  • 控制点的坐标取值
    • 弯曲处方向,在左上方: (相对于 起始点和终点之间的 连接线段)
      • cp1x和cp2x < min (起始点x,终点x)
      • cp1y和cp2y < min (起始点y,终点y)
    • 弯曲处方向,在右上方
      • cp1x和cp2x > max (起始点x,终点x)
      • cp1y和cp2y < min (起始点y,终点y)
    • 弯曲处方向,在右下方
      • cp1x和cp2x > max (起始点x,终点x)
      • cp1y和cp2y > max (起始点y,终点y)
    • 弯曲处方向,在左下方
      • cp1x和cp2x < min (起始点x,终点x)
      • cp1y和cp2y > max (起始点y,终点y)
弯曲处于 左上方 弯曲处于 右上方
【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第65张图片 【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第66张图片
弯曲处于 右下方 弯曲处于 左下方
【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第67张图片 【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第68张图片
  • 总结:控制点取值 和弯曲处位置关系(相对于 开始点和终点之间的线段,要先确定 起始点和终点坐标)
    • 弯曲处的左右控制:
      • 向左弯曲: = 弯曲处 在左边= 小于 x最小值
        • 控制点的横坐标 ,要小于 起始点和终点的横坐标,距离越远,拉伸越长
        • cp1x和cp2x < min (起始点x,终点x) ,小于 x最小值
      • 向右弯曲: = 弯曲处 在右边 = 大于 x最大值
        • 控制点的横坐标,要大于起始点和终点的横坐标,距离越远,拉伸越长
        • cp1x和cp2x > max (起始点x,终点x) ,大于 x最大值
    • 弯曲处的上下控制:
      • 向上弯曲: = 弯曲处 在上方 = 小于 y最小值
        • cp1y和cp2y < min (起始点y,终点y) ,小于 y最小值
      • 向下弯曲: = 弯曲处 在下方 = 大于 y最大值
        • cp1y和cp2y > max (起始点y,终点y) = 大于 y最大值

  • 参考文档
    • W3School 教程
    • MDN Canvas教程

  • 捐助: 喜欢这篇文章吗? 捐助此文,向团团 表示鼓励和支持吧~❤
    【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第69张图片
  • 捐助二维码:

【HTML 中的二次贝塞尔曲线 和三次贝塞尔曲线】(使用说明详解)_第70张图片


  • 感谢:♥♥♥ 如果这篇文章对您有帮助的话,可以点赞、评论、关注,鼓励下作者哦,感谢阅读 ~

  • 转载 请注明出处 ,Thanks♪(・ω・)ノ

    • 作者:Hey_Coder
    • 来源:CSDN
    • 原文:https://blog.csdn.net/VickyTsai/article/details/90044515
    • 版权声明:本文为博主原创文章,转载请附上博文链接!

你可能感兴趣的:(【HTML】)