- LabVIEW MathScript薄板热流模拟
LabVIEW开发
LabVIEW参考程序LabVIEW知识LabVIEW知识LabVIEW程序LabVIEW功能labview
热流模拟是热设计关键环节,传统工具精准但开发周期长,本VI利用LabVIEW优势,面向工程师快速验证需求,在初步方案迭代、教学演示等场景更具效率,为热分析提供轻量化替代路径,后续可结合专业工具,先通过本VI快速定性分析,再用传统工具精准求解,提升研发流程效率。此VI用于模拟单点热源下薄板的热流,求解带周期边界条件的椭圆型偏微分方程,借助LabVIEWMathScriptNode实现自定义函数,结合
- 人形机器人运动控制技术演进:从强化学习到神经微分方程的前沿解析
1.引言:人形运动控制的挑战与范式迁移人形机器人需在非结构化环境中实现双足行走、跑步、跳跃等复杂动作,其核心问题可归结为高维连续状态-动作空间的实时优化。传统方法(如基于模型的预测控制MPC)依赖精确的动力学建模,但在实际系统中面临以下瓶颈:模型失配:复杂接触动力学(如足-地交互)难以显式建模;计算瓶颈:高维非线性优化难以满足实时性需求;环境扰动敏感:传统控制器对未知干扰的鲁棒性不足。近年来,以强
- MIT 6.S184 Lec01 Flow and Diffusion Models
克斯维尔的明天_
机器学习人工智能
MIT6.S184Lec01FlowandDiffusionModels本节中,我们将描述如何通过模拟一个适当构造的微分方程来获得所需的转换。例如,流匹配和扩散模型分别涉及模拟常微分方程(ODE)和随机微分方程(SDE)。因此,本节的目标是定义和构建这些生成模型。具体来说,我们首先定义ODE和SDE,并讨论它们的模拟。其次,我们描述如何使用深度神经网络对ODE/SDE进行参数化。从中推导出流模型和
- 求解偏微分方程的Fourier展开式
解答:(1)求解的Fourier展开式考虑边值问题:∂2u∂t2=∂∂x((cosx+2)∂u∂x)−(sinπxl)u,(x,t)∈(0,l)×(0,T),\frac{\partial^2u}{\partialt^2}=\frac{\partial}{\partialx}\left((\cosx+2)\frac{\partialu}{\partialx}\right)-\left(\sin\
- 2023考研数一真题及答案
猿六凯
考研
历年数一真题及答案下载直通车曲线y=xln(e+1x−1)y=x\ln(e+\frac{1}{x-1})y=xln(e+x−11)的渐近线方程为()(A)y=x+ey=x+ey=x+e(B)y=x+1ey=x+\frac{1}{e}y=x+e1©y=xy=xy=x(D)y=x−1ey=x-\frac{1}{e}y=x−e1若微分方程y′′+ay′+by=0y''+ay'+by=0y′′+ay′+
- 云计算在可视化非线性偏微分方程动力学中的应用:拟线性和半线性示例-AI云计算数值分析和代码验证
亚图跨际
AI云计算人工智能
“拟线性”和“半线性”代表了非线性偏微分方程(PDEs)这一大类中的重要分类。其区别主要在于非线性的表现形式,特别是与未知函数的最高阶导数之间的关系。在偏微分方程的研究中,将其分为线性、半线性、拟线性和完全非线性至关重要,因为用于分析和求解它们(例如,解的存在性、唯一性、正则性、数值方法)的数学技术根据其线性性质而显著不同。非线性偏微分方程通常比线性偏微分方程更难求解和分析,即使在非线性类别中,由
- 模拟多维物理过程与基于云的数值分析-AI云计算数值分析和代码验证
亚图跨际
AI人工智能云计算
高维输运与扩散方程,涵盖了严格的扩散极限、多维扩散理论、先进的数值和基于粒子的模拟方法,以及分数阶/电报式推广,为广泛的科学和工程领域中复杂输运现象的建模、分析和模拟提供了强大的工具。高维输运和扩散方程涵盖了输运方程的严格扩散极限、结合随机和偏微分方程工具的多维扩散理论、先进的数值和基于粒子的模拟方法、分数阶和电报式输运的推广,以及在地球物理和工程系统中的应用。这些框架为建模、分析和模拟许多科学和
- 《高等数学》(同济大学·第7版)第十二章 无穷级数 第五节函数的幂级数展开式的应用
没有女朋友的程序员
高等数学
一、幂级数展开的核心作用幂级数展开不仅是理论工具,更是解决实际问题的计算利器,主要应用包括:近似计算:用多项式逼近复杂函数(如计算函数值、积分值)。求解微分方程:将解表示为幂级数形式,逐项代入方程求解。求和与积分:将难以处理的级数转化为已知函数的展开式。分析函数性质:通过展开式研究函数的极值、拐点等。二、典型应用详解近似计算函数值原理:用泰勒多项式的前几项近似代替原函数。关键步骤:写出函数的麦克劳
- 《高等数学》(同济大学·第7版)第七章 微分方程 第四节一阶线性微分方程
没有女朋友的程序员
高等数学
好的,这是将您提供的高等数学教案内容中的LaTeX公式转换为纯文本格式后的版本:同学们好!今天我们学习《高等数学》第七章第四节“一阶线性微分方程”。这是一阶微分方程中最重要、应用最广泛的一类方程,掌握它的解法对后续学习(如微分方程的应用、高阶线性微分方程)至关重要。我会用最通俗的语言,结合大量例子,帮你彻底掌握“一阶线性微分方程”的定义、解法和核心思想。一、一阶线性微分方程的定义:长什么样?1.标
- 蔡高厅老师 - 高等数学-阅读笔记 - 01 - 前言、函数【视频第01、02、03、】
Franklin
数学线性代数
高等数学前言;196学时,每周6课主要内容:上册一元、多元函数数,微分学、积分学、矢量代数、空间解析几何无穷级数、微分方程,多元函数微分学和积分学目的:高等数学3基:1高等数学的基本知识2高度数学的基本理论3高等数学的基本计算方法提高数学素养培养:抽象思维、逻辑推理、辩证的思想方法、空间想象能力、分析问题、解决问题的能力为进一步学习打下必要的学习基础和初等数学不同,研究的不是常量而是变量,变量和变
- 高等数学》(同济大学·第7版)第七章 微分方程 第五节可降阶的高阶微分方程
没有女朋友的程序员
高等数学
好的,这是将您提供的高等数学第七章第五节教案内容中的LaTeX公式转换为纯文本格式后的版本:同学们好!今天我们学习《高等数学》第七章第五节“可降阶的高阶微分方程”。高阶微分方程(如二阶、三阶)直接求解困难,但许多方程可以通过“降阶”转化为低阶方程(如一阶方程)来求解。本节重点讲解三类可降阶的高阶微分方程,掌握它们的解法对后续学习至关重要。我会用最通俗的语言,结合大量例子,帮你彻底掌握。一、可降阶高
- 高等数学》(同济大学·第7版)第七章 微分方程 第三节齐次方程
没有女朋友的程序员
高等数学
同学们好!今天我们学习《高等数学》第七章第三节“齐次方程”。这是微分方程中一类重要的可转化方程,掌握它的解法对后续学习(如线性微分方程)有重要意义。我会用最通俗的语言,结合大量例子,帮你彻底掌握“齐次方程”的定义、特点和解法。一、齐次方程的定义:什么是“齐次”?1.齐次方程的两种含义在微积分中,“齐次”有两种常见含义,但这里我们特指一阶微分方程中的齐次方程:若一阶微分方程可以写成以下形式:dydx
- 线性代数和c语言先学哪个,线性代数和哪个更有用?
段丞博
线性代数和c语言先学哪个
一、从数学与应用数学这个专业来分析下“线性代数”和“高等数学”这两块的内容,无论哪块知识在“考研究生数学科目中的考试”都会涉汲到的,而且有些专业的考试也包括概率论与数理统计这块知识。线性代数和哪个更有用?1、线性代数内容:行列式、矩阵、向量、线性方程组、特征值和特征向量、二次型。2、高等数学内容:函数·极限·连续、导数与微分、不定积分、定积分及广义积分、中值定理的证明、常微分方程、一元微积分的应用
- 结构力学数值方法:谐波平衡法:高级谐波平衡法技术_2024-08-05_22-46-19.Tex
chenjj4003
材料力学2算法线性代数矩阵决策树人工智能
结构力学数值方法:谐波平衡法:高级谐波平衡法技术绪论谐波平衡法简介谐波平衡法(HarmonicBalanceMethod,HBM)是一种用于求解非线性振动系统周期解的数值方法。它通过将系统的响应表示为一系列谐波函数的线性组合,然后利用傅里叶级数展开,将非线性微分方程转换为一组代数方程,从而简化了求解过程。这种方法特别适用于分析具有周期性激励的非线性系统,如机械振动、电路振荡等。高级谐波平衡法技术的
- Flux Reconstruction(FR,通量重构)方法
东北豆子哥
重构算法人工智能
文章目录FluxReconstruction(FR,通量重构)方法**核心思想****关键步骤****优势****文献推荐****注意事项**FluxReconstruction(FR,通量重构)方法FluxReconstruction(FR,通量重构)方法是一种高阶精度的数值计算框架,主要用于求解偏微分方程(尤其是双曲守恒律方程),在计算流体力学(CFD)等领域有广泛应用。它结合了间断有限元法(
- python scipy简介
凤枭香
Python图像处理pythonscipy开发语言图像处理
scipyscipy是一个python开源的数学计算库,可以应用于数学、科学以及工程领域,它是基于numpy的科学计算库。主要包含了统计学、最优化、线性代数、积分、傅里叶变换、信号处理和图像处理以及常微分方程的求解以及其他科学工程中所用到的计算。scipy模块介绍scipy主要通过下面这些包来实现数学算法和科学计算,后面对于scipy的讲解主要也是基于这些包来实现的cluster:包含聚类算法co
- Python之scipy(算法/数学工具)用法
薛毅轩
python
scipy是一个开源的Python算法库和数学工具包,它基于NumPy,提供了许多用于数学、科学和工程的算法。scipy包含了统计、优化、积分、插值、特殊函数、快速傅里叶变换、信号处理、图像处理、常微分方程求解等模块。以下是一些scipy库的基本用法示例:1.特殊函数scipy.special模块提供了许多数学上的特殊函数。fromscipyimportspecial#计算阶乘和组合数factor
- 偏微分方程通解与初值问题求解2
weixin_30777913
算法
题目问题1.(a)求下列各方程的通解:ut+3ux−2uy=0;ut+xux+yuy=0;ut+xux−yuy=0;ut+yux+xuy=0;ut+yux−xuy=0.u_t+3u_x-2u_y=0;\quadu_t+xu_x+yu_y=0;\\u_t+xu_x-yu_y=0;\quadu_t+yu_x+xu_y=0;\\u_t+yu_x-xu_y=0.ut+3ux−2uy=0;ut+xux+yu
- [ 常微分方程 ] 01 ODE积分曲线和方向场可视化(Python)
有梦想的西瓜
数学python
今天老师布置了个一阶线性微分方程的python可视化作业,由于作者本人水平有限(爆哭),之后再把非线性和高阶微分方程学会了再一并补充进来。文章目录一阶微分方程一阶线性微分方程基本概念积分曲线:方向场图:等倾斜线图:例子1:dydx=x2−y\frac{dy}{dx}=x^2-ydxdy=x2−y例子2:dydx=x−y\frac{dy}{dx}=x-ydxdy=x−y一阶微分方程一阶线性微分方程基
- matlab求解常微分方程的实验,实验五 - - 用matlab求解常微分方程
胡千山
实验五用matlab求解常微分方程1.微分方程的概念未知的函数以及它的某些阶的导数连同自变量都由一已知方程联系在一起的方程称为微分方程。如果未知函数是一元函数,称为常微分方程。常微分方程的一般形式为F(t,y,y',y\,?,y(n))?0如果未知函数是多元函数,成为偏微分方程。联系一些未知函数的一组微分方程组称为微分方程组。微分方程中出现的未知函数的导数的最高阶解数称为微分方程的阶。若方程中未知
- matlab方程求解的实验,实验七用matlab求解常微分方程
蔡振原
matlab方程求解的实验
《实验七用matlab求解常微分方程》由会员分享,可在线阅读,更多相关《实验七用matlab求解常微分方程(7页珍藏版)》请在人人文库网上搜索。1、实验七用matlab求解常微分方程一、实验目的:1、熟悉常微分方程的求解方法,了解状态方程的概念;2、能熟练使用dsolve函数求常微分方程(组)的解析解;3、能熟练应用ode45ode15s函数分别求常微分方程的非刚性、刚性的数值解;4、掌握绘制相图
- 基于云计算的振动弦分析:谐波可视化与波动方程参数理解-AI云计算数值分析和代码验证
亚图跨际
AI云计算人工智能
振动弦方程是一个基础的偏微分方程,它描述了弹性弦的横向振动。其应用范围广泛,不仅可用于模拟乐器和一般的波动现象,更是数学物理以及深奥的弦理论中的重要基石。☁️AI云计算数值分析和代码验证振动弦方程是描述固定两端弹性弦横向振动的基本偏微分方程(PDE),其典型表达式为:∂2u∂t2=c2∂2u∂x2\frac{\partial^2u}{\partialt^2}=c^2\frac{\partial^2
- Python实例题:使用Python 解数学方程
狐凄
实例python开发语言
目录Python实例题题目1.解代数方程(如一元二次方程)2.使用SymPy解符号方程3.使用NumPy解线性方程组4.使用SciPy解非线性方程5.解微分方程总结Python实例题题目使用Python解数学方程1.解代数方程(如一元二次方程)对于简单的代数方程,可以直接使用求根公式:importmathdefsolve_quadratic(a,b,c):"""解一元二次方程ax²+bx+c=0"
- 《高等数学 第7版(同济大学 上册).pdf》资源介绍
孟津葵Gilda
《高等数学第7版(同济大学上册).pdf》资源介绍【下载地址】高等数学第7版同济大学上册.pdf资源介绍本资源提供《高等数学第7版(同济大学上册)》电子书,内容涵盖函数与极限、导数与微分、微分方程等核心章节,适合工科和理科学生系统学习。书中包含详细的理论讲解、丰富实例及习题答案,帮助读者深入理解高等数学知识。章节划分清晰,便于查找和学习。资源仅供学习研究使用,请合理利用,尊重知识产权。项目地址:h
- 振动力学:弹性杆的纵向振动(固有振动和固有频率的概念)
Wang的王
经典力学笔记笔记
文章1、2、3中讨论的是离散系统的振动特性,然而实际系统的惯性质量、弹性、阻尼等特性都是连续分布的,因而成为连续系统或分布参数系统。确定连续介质中无数个点的运动需要无限个广义坐标,因此也称为无限自由度系统,典型的结构例如:弦、杆、膜、环、梁、板、壳等,也称为弹性体。弹性体的微振动通常由偏微分方程描述。本文研究弹性杆的纵向振动特性。1.弹性杆纵向振动方程1.1振动方程某一直杆长为lll,沿杆件的轴线
- COMSOL Multiphysics软件二次开发:COMSOL软件在固体力学中的应用
kkchenjj
仿真模拟工业软件仿真模拟工业软件二次开发开发语言
COMSOLMultiphysics软件二次开发:COMSOL软件在固体力学中的应用COMSOLMultiphysics概述COMSOLMultiphysics是一款强大的多物理场仿真软件,它允许用户通过数值方法求解偏微分方程,从而模拟各种物理现象。软件的核心功能在于其灵活的建模环境和多物理场耦合能力,使得用户能够在一个统一的界面下,对涉及多种物理场的复杂问题进行仿真和分析。特点与应用多物理场耦合
- MATLAB实战:传染病模型仿真实现
三三十二
matlab开发语言
以下是一个使用MATLAB实现传染病模型(SIR和SEIR)仿真的完整解决方案,包含参数分析和干预措施模拟:%%传染病模型仿真工具箱%包含SIR、SEIR模型,支持参数调整和干预措施模拟%使用ode45求解微分方程functionepidemic_modeling()%主控制界面fig=uifigure('Name','传染病模型仿真','Position',[100100800600]);%模型
- 二阶线性微分方程的通解与特解
debug_running_Hu
线性代数算法机器学习学习
二阶线性微分方程的通解与特解二阶线性微分方程的一般形式为:a(x)y′′+b(x)y′+c(x)y=f(x)a(x)y''+b(x)y'+c(x)y=f(x)a(x)y′′+b(x)y′+c(x)y=f(x)其中,a(x),b(x),c(x)为系数函数,f(x)为非齐次项。1.齐次方程(f(x)=0):当f(x)=0时,方程变为齐次方程:a(x)y′′+b(x)y′+c(x)y=0a(x)y''+
- 泛函分析基础11-线性算子的谱1:谱的概念
u013250861
泛函分析基础泛函分析
谱论是泛函分析的重要分支之一.线性代数告诉我们:有限维空间上的线性算子由它的特征值和最小多项式完全确定.将这一结论推广到有界线性算子的情况,研究它的结构,就是算子的谱理论所谓算子的"谱",类似于有限维空间上算子—一矩阵的特征值.而无限维空间上的算子谱论,也就相当于把矩阵化为若尔当标准形.由于特征值和逆算子有密切关系,谱论也大量涉及逆算子的问题.将算子求逆应用到微分算子和积分算子上,推动了微分方程和
- matlab解高阶非齐次方程并作图,2x2齐次线性方程组作图
阿橘要努力上清华
主题:不同于一般常微分方程课程千篇一律地从分离变量和一阶线性方程讲起,MIT《微分方程》第一讲就以独特的视角从全局的角度诠释了微分方程的内涵。课程从方向场和积分曲线入手,深入透彻地剖析了微分方程的实质。一上来,撇开那些有解的特殊的微分方程不谈,却从几何方向通俗易懂,而又全面深入地告诉我们什么是微分方程,解微分方程其实是什么。主题:老头爽约了,他没有按之前说的,讲线性方程的解法,而是开始讲数值方法。
- Java 并发包之线程池和原子计数
lijingyao8206
Java计数ThreadPool并发包java线程池
对于大数据量关联的业务处理逻辑,比较直接的想法就是用JDK提供的并发包去解决多线程情况下的业务数据处理。线程池可以提供很好的管理线程的方式,并且可以提高线程利用率,并发包中的原子计数在多线程的情况下可以让我们避免去写一些同步代码。
这里就先把jdk并发包中的线程池处理器ThreadPoolExecutor 以原子计数类AomicInteger 和倒数计时锁C
- java编程思想 抽象类和接口
百合不是茶
java抽象类接口
接口c++对接口和内部类只有简介的支持,但在java中有队这些类的直接支持
1 ,抽象类 : 如果一个类包含一个或多个抽象方法,该类必须限定为抽象类(否者编译器报错)
抽象方法 : 在方法中仅有声明而没有方法体
package com.wj.Interface;
- [房地产与大数据]房地产数据挖掘系统
comsci
数据挖掘
随着一个关键核心技术的突破,我们已经是独立自主的开发某些先进模块,但是要完全实现,还需要一定的时间...
所以,除了代码工作以外,我们还需要关心一下非技术领域的事件..比如说房地产
&nb
- 数组队列总结
沐刃青蛟
数组队列
数组队列是一种大小可以改变,类型没有定死的类似数组的工具。不过与数组相比,它更具有灵活性。因为它不但不用担心越界问题,而且因为泛型(类似c++中模板的东西)的存在而支持各种类型。
以下是数组队列的功能实现代码:
import List.Student;
public class
- Oracle存储过程无法编译的解决方法
IT独行者
oracle存储过程
今天同事修改Oracle存储过程又导致2个过程无法被编译,流程规范上的东西,Dave 这里不多说,看看怎么解决问题。
1. 查看无效对象
XEZF@xezf(qs-xezf-db1)> select object_name,object_type,status from all_objects where status='IN
- 重装系统之后oracle恢复
文强chu
oracle
前几天正在使用电脑,没有暂停oracle的各种服务。
突然win8.1系统奔溃,无法修复,开机时系统 提示正在搜集错误信息,然后再开机,再提示的无限循环中。
无耐我拿出系统u盘 准备重装系统,没想到竟然无法从u盘引导成功。
晚上到外面早了一家修电脑店,让人家给装了个系统,并且那哥们在我没反应过来的时候,
直接把我的c盘给格式化了 并且清理了注册表,再装系统。
然后的结果就是我的oracl
- python学习二( 一些基础语法)
小桔子
pthon基础语法
紧接着把!昨天没看继续看django 官方教程,学了下python的基本语法 与c类语言还是有些小差别:
1.ptyhon的源文件以UTF-8编码格式
2.
/ 除 结果浮点型
// 除 结果整形
% 除 取余数
* 乘
** 乘方 eg 5**2 结果是5的2次方25
_&
- svn 常用命令
aichenglong
SVN版本回退
1 svn回退版本
1)在window中选择log,根据想要回退的内容,选择revert this version或revert chanages from this version
两者的区别:
revert this version:表示回退到当前版本(该版本后的版本全部作废)
revert chanages from this versio
- 某小公司面试归来
alafqq
面试
先填单子,还要写笔试题,我以时间为急,拒绝了它。。时间宝贵。
老拿这些对付毕业生的东东来吓唬我。。
面试官很刁难,问了几个问题,记录下;
1,包的范围。。。public,private,protect. --悲剧了
2,hashcode方法和equals方法的区别。谁覆盖谁.结果,他说我说反了。
3,最恶心的一道题,抽象类继承抽象类吗?(察,一般它都是被继承的啊)
4,stru
- 动态数组的存储速度比较 集合框架
百合不是茶
集合框架
集合框架:
自定义数据结构(增删改查等)
package 数组;
/**
* 创建动态数组
* @author 百合
*
*/
public class ArrayDemo{
//定义一个数组来存放数据
String[] src = new String[0];
/**
* 增加元素加入容器
* @param s要加入容器
- 用JS实现一个JS对象,对象里有两个属性一个方法
bijian1013
js对象
<html>
<head>
</head>
<body>
用js代码实现一个js对象,对象里有两个属性,一个方法
</body>
<script>
var obj={a:'1234567',b:'bbbbbbbbbb',c:function(x){
- 探索JUnit4扩展:使用Rule
bijian1013
java单元测试JUnitRule
在上一篇文章中,讨论了使用Runner扩展JUnit4的方式,即直接修改Test Runner的实现(BlockJUnit4ClassRunner)。但这种方法显然不便于灵活地添加或删除扩展功能。下面将使用JUnit4.7才开始引入的扩展方式——Rule来实现相同的扩展功能。
1. Rule
&n
- [Gson一]非泛型POJO对象的反序列化
bit1129
POJO
当要将JSON数据串反序列化自身为非泛型的POJO时,使用Gson.fromJson(String, Class)方法。自身为非泛型的POJO的包括两种:
1. POJO对象不包含任何泛型的字段
2. POJO对象包含泛型字段,例如泛型集合或者泛型类
Data类 a.不是泛型类, b.Data中的集合List和Map都是泛型的 c.Data中不包含其它的POJO
 
- 【Kakfa五】Kafka Producer和Consumer基本使用
bit1129
kafka
0.Kafka服务器的配置
一个Broker,
一个Topic
Topic中只有一个Partition() 1. Producer:
package kafka.examples.producers;
import kafka.producer.KeyedMessage;
import kafka.javaapi.producer.Producer;
impor
- lsyncd实时同步搭建指南——取代rsync+inotify
ronin47
1. 几大实时同步工具比较 1.1 inotify + rsync
最近一直在寻求生产服务服务器上的同步替代方案,原先使用的是 inotify + rsync,但随着文件数量的增大到100W+,目录下的文件列表就达20M,在网络状况不佳或者限速的情况下,变更的文件可能10来个才几M,却因此要发送的文件列表就达20M,严重减低的带宽的使用效率以及同步效率;更为要紧的是,加入inotify
- java-9. 判断整数序列是不是二元查找树的后序遍历结果
bylijinnan
java
public class IsBinTreePostTraverse{
static boolean isBSTPostOrder(int[] a){
if(a==null){
return false;
}
/*1.只有一个结点时,肯定是查找树
*2.只有两个结点时,肯定是查找树。例如{5,6}对应的BST是 6 {6,5}对应的BST是
- MySQL的sum函数返回的类型
bylijinnan
javaspringsqlmysqljdbc
今天项目切换数据库时,出错
访问数据库的代码大概是这样:
String sql = "select sum(number) as sumNumberOfOneDay from tableName";
List<Map> rows = getJdbcTemplate().queryForList(sql);
for (Map row : rows
- java设计模式之单例模式
chicony
java设计模式
在阎宏博士的《JAVA与模式》一书中开头是这样描述单例模式的:
作为对象的创建模式,单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例。这个类称为单例类。 单例模式的结构
单例模式的特点:
单例类只能有一个实例。
单例类必须自己创建自己的唯一实例。
单例类必须给所有其他对象提供这一实例。
饿汉式单例类
publ
- javascript取当月最后一天
ctrain
JavaScript
<!--javascript取当月最后一天-->
<script language=javascript>
var current = new Date();
var year = current.getYear();
var month = current.getMonth();
showMonthLastDay(year, mont
- linux tune2fs命令详解
daizj
linuxtune2fs查看系统文件块信息
一.简介:
tune2fs是调整和查看ext2/ext3文件系统的文件系统参数,Windows下面如果出现意外断电死机情况,下次开机一般都会出现系统自检。Linux系统下面也有文件系统自检,而且是可以通过tune2fs命令,自行定义自检周期及方式。
二.用法:
Usage: tune2fs [-c max_mounts_count] [-e errors_behavior] [-g grou
- 做有中国特色的程序员
dcj3sjt126com
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有
- Android:TextView属性大全
dcj3sjt126com
textview
android:autoLink 设置是否当文本为URL链接/email/电话号码/map时,文本显示为可点击的链接。可选值(none/web/email/phone/map/all) android:autoText 如果设置,将自动执行输入值的拼写纠正。此处无效果,在显示输入法并输
- tomcat虚拟目录安装及其配置
eksliang
tomcat配置说明tomca部署web应用tomcat虚拟目录安装
转载请出自出处:http://eksliang.iteye.com/blog/2097184
1.-------------------------------------------tomcat 目录结构
config:存放tomcat的配置文件
temp :存放tomcat跑起来后存放临时文件用的
work : 当第一次访问应用中的jsp
- 浅谈:APP有哪些常被黑客利用的安全漏洞
gg163
APP
首先,说到APP的安全漏洞,身为程序猿的大家应该不陌生;如果抛开安卓自身开源的问题的话,其主要产生的原因就是开发过程中疏忽或者代码不严谨引起的。但这些责任也不能怪在程序猿头上,有时会因为BOSS时间催得紧等很多可观原因。由国内移动应用安全检测团队爱内测(ineice.com)的CTO给我们浅谈关于Android 系统的开源设计以及生态环境。
1. 应用反编译漏洞:APK 包非常容易被反编译成可读
- C#根据网址生成静态页面
hvt
Web.netC#asp.nethovertree
HoverTree开源项目中HoverTreeWeb.HVTPanel的Index.aspx文件是后台管理的首页。包含生成留言板首页,以及显示用户名,退出等功能。根据网址生成页面的方法:
bool CreateHtmlFile(string url, string path)
{
//http://keleyi.com/a/bjae/3d10wfax.htm
stri
- SVG 教程 (一)
天梯梦
svg
SVG 简介
SVG 是使用 XML 来描述二维图形和绘图程序的语言。 学习之前应具备的基础知识:
继续学习之前,你应该对以下内容有基本的了解:
HTML
XML 基础
如果希望首先学习这些内容,请在本站的首页选择相应的教程。 什么是SVG?
SVG 指可伸缩矢量图形 (Scalable Vector Graphics)
SVG 用来定义用于网络的基于矢量
- 一个简单的java栈
luyulong
java数据结构栈
public class MyStack {
private long[] arr;
private int top;
public MyStack() {
arr = new long[10];
top = -1;
}
public MyStack(int maxsize) {
arr = new long[maxsize];
top
- 基础数据结构和算法八:Binary search
sunwinner
AlgorithmBinary search
Binary search needs an ordered array so that it can use array indexing to dramatically reduce the number of compares required for each search, using the classic and venerable binary search algori
- 12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
刘星宇
c面试
12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
1.gets()函数
问:请找出下面代码里的问题:
#include<stdio.h>
int main(void)
{
char buff[10];
memset(buff,0,sizeof(buff));
- ITeye 7月技术图书有奖试读获奖名单公布
ITeye管理员
活动ITeye试读
ITeye携手人民邮电出版社图灵教育共同举办的7月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
7月试读活动回顾:
http://webmaster.iteye.com/blog/2092746
本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《Java性能优化权威指南》