Windows10下安装GPU版TensorFlow(显卡RTX2060)过程记录

第一次安装GPU版的tensorflow,这里做下记录。

1. miniconda安装

下载地址:https://conda.io/en/latest/miniconda.html

我这里安装的是Python3.7 64-bit版

安装完成后创建一个conda环境

conda create --name tf python=3

然后进入环境

activate tf

2.Visual Studio安装

下载地址:https://visualstudio.microsoft.com/zh-hans/

我这里下载的是Windows Community 2017版,下载完成后双击进行安装,安装C++的编译器。

3. CUDA10.0下载与安装

目前,TensorFlow官方1.12版本还不支持CUDA 10.0版本,但是万能的github上有我们所需要的,这个后面再说。

这里先安装CUDA 10.0版本。下载地址:https://developer.nvidia.com/cuda-downloads

Windows10下安装GPU版TensorFlow(显卡RTX2060)过程记录_第1张图片
CUDA10.0下载

我这里偷懒,选择的是network版本,选择local版本也是一样的,就是安装包体积大了些。

4. cuDNN7.3.1下载与安装

选择cuDNN 7.3.1版本也是按照后面选择的TensorFlow版本所要求的。

下载地址:https://developer.nvidia.com/rdp/cudnn-archive,选择cuDNN v7.3.1 Library for Windows 10

Windows10下安装GPU版TensorFlow(显卡RTX2060)过程记录_第2张图片
cuDNN 7.3.1下载

5.TensorFlow下载与安装

由于TensorFlow官方1.12版本还不支持cuda 10.0版本,所以还是得求助github,附github地址:https://github.com/fo40225/tensorflow-windows-wheel

我这里选择的是:1.12.0\py37\GPU\cuda100cudnn73avx2 版本,从下图中可以看到,其支持的版本是CUDA 10.0.130_411.31,cuDNN 7.3.1.20,这也是我之前在安装CUDA和cuDNN是所选择的版本。

Windows10下安装GPU版TensorFlow(显卡RTX2060)过程记录_第3张图片
TensorFlow下载

下载完成后,进入下载文件的文件夹,进入相应的conda环境,然后使用下列命令进行安装

pip install tensorflow_gpu-1.12.0-cp37-cp37m-win_amd64.whl

使用conda list查看安装情况,看到了tensorflow-gpu说明已经安装完成。

Windows10下安装GPU版TensorFlow(显卡RTX2060)过程记录_第4张图片

6. TensorFlow测试

TensorFlow测试

在python环境下,引入tensrflow没有问题,下面测试一下tensorflow是否能够调用GPU。

测试代码:

import tensorflow as tf
a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
c = tf.matmul(a, b)
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
print(sess.run(c))
Windows10下安装GPU版TensorFlow(显卡RTX2060)过程记录_第5张图片

图中device:GPU:0表示调用了GPU。

安装成功~~~ _

你可能感兴趣的:(Windows10下安装GPU版TensorFlow(显卡RTX2060)过程记录)