所有博文均在个人独立博客http://blog.mozhu.org首发,欢迎访问!
Brave是Java版的Zipkin客户端,它将收集的跟踪信息,以Span的形式上报给Zipkin系统。
(Zipkin是基于Google的一篇论文,名为Dapper,Dapper在荷兰语里是“勇敢的”的意思,这也是Brave的命名的原因)
Brave目前版本为4.9.1,兼容zipkin1和2的协议,github地址:https://github.com/openzipkin/brave
我们一般不会手动编写Trace相关的代码,Brave提供了一些开箱即用的库,来帮助我们对某些特定的库类来进行追踪,比如servlet,springmvc,mysql,okhttp3,httpclient等,这些都可以在下面页面中找到:
https://github.com/openzipkin/brave/tree/master/instrumentation
我们先来看看一个简单的Demo来演示下Brave的基本使用,这对我们后续分析Brave的原理和其他类库的使用有很大帮助
TraceDemo
package tracing;
import brave.Span;
import brave.Tracer;
import brave.Tracing;
import brave.context.log4j2.ThreadContextCurrentTraceContext;
import brave.propagation.B3Propagation;
import brave.propagation.ExtraFieldPropagation;
import zipkin2.codec.SpanBytesEncoder;
import zipkin2.reporter.AsyncReporter;
import zipkin2.reporter.Sender;
import zipkin2.reporter.okhttp3.OkHttpSender;
import java.util.concurrent.TimeUnit;
public class TraceDemo {
public static void main(String[] args) {
Sender sender = OkHttpSender.create("http://localhost:9411/api/v2/spans");
AsyncReporter asyncReporter = AsyncReporter.builder(sender)
.closeTimeout(500, TimeUnit.MILLISECONDS)
.build(SpanBytesEncoder.JSON_V2);
Tracing tracing = Tracing.newBuilder()
.localServiceName("tracer-demo")
.spanReporter(asyncReporter)
.propagationFactory(ExtraFieldPropagation.newFactory(B3Propagation.FACTORY, "user-name"))
.currentTraceContext(ThreadContextCurrentTraceContext.create())
.build();
Tracer tracer = tracing.tracer();
Span span = tracer.newTrace().name("encode").start();
try {
doSomethingExpensive();
} finally {
span.finish();
}
Span twoPhase = tracer.newTrace().name("twoPhase").start();
try {
Span prepare = tracer.newChild(twoPhase.context()).name("prepare").start();
try {
prepare();
} finally {
prepare.finish();
}
Span commit = tracer.newChild(twoPhase.context()).name("commit").start();
try {
commit();
} finally {
commit.finish();
}
} finally {
twoPhase.finish();
}
sleep(1000);
}
private static void doSomethingExpensive() {
sleep(500);
}
private static void commit() {
sleep(500);
}
private static void prepare() {
sleep(500);
}
private static void sleep(long milliseconds) {
try {
TimeUnit.MILLISECONDS.sleep(milliseconds);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
启动Zipkin,然后运行TraceDemo,在Zipkin的UI界面中能查到两条跟踪信息
点击第一条跟踪信息,可以看到有一条Span(encode),耗时500ms左右
本条跟踪信息对应的代码片段为:
Tracer tracer = tracing.tracer();
Span span = tracer.newTrace().name("encode").start();
try {
doSomethingExpensive();
} finally {
span.finish();
}
由Tracer创建一个新的Span,名为encode,然后调用start方法开始计时,之后运行一个比较耗时的方法doSomethingExpensive,最后调用finish方法结束计时,完成并记录一条跟踪信息。
这段代码实际上向Zipkin上报的数据为:
[
{
"traceId": "16661f6cb5d58903",
"id": "16661f6cb5d58903",
"name": "encode",
"timestamp": 1510043590522358,
"duration": 499867,
"binaryAnnotations": [
{
"key": "lc",
"value": "",
"endpoint": {
"serviceName": "tracer-demo",
"ipv4": "192.168.99.1"
}
}
]
}
]
然后我们再来看第二条稍微复杂的跟踪信息,可以看到一条名为twoPhase的Span,总耗时为1000ms,它有2个子Span,分别名为prepare和commit,两者分别耗时500ms
这条跟踪信息对应的代码片段为
Span twoPhase = tracer.newTrace().name("twoPhase").start();
try {
Span prepare = tracer.newChild(twoPhase.context()).name("prepare").start();
try {
prepare();
} finally {
prepare.finish();
}
Span commit = tracer.newChild(twoPhase.context()).name("commit").start();
try {
commit();
} finally {
commit.finish();
}
} finally {
twoPhase.finish();
}
这段代码实际上向Zipkin上报的数据为:
[
{
"traceId": "89e051d5394b90b1",
"id": "89e051d5394b90b1",
"name": "twophase",
"timestamp": 1510043591038983,
"duration": 1000356,
"binaryAnnotations": [
{
"key": "lc",
"value": "",
"endpoint": {
"serviceName": "tracer-demo",
"ipv4": "192.168.99.1"
}
}
]
},
{
"traceId": "89e051d5394b90b1",
"id": "60568c4903793b8d",
"name": "prepare",
"parentId": "89e051d5394b90b1",
"timestamp": 1510043591039919,
"duration": 499246,
"binaryAnnotations": [
{
"key": "lc",
"value": "",
"endpoint": {
"serviceName": "tracer-demo",
"ipv4": "192.168.99.1"
}
}
]
},
{
"traceId": "89e051d5394b90b1",
"id": "ce14448169d01d2f",
"name": "commit",
"parentId": "89e051d5394b90b1",
"timestamp": 1510043591539304,
"duration": 499943,
"binaryAnnotations": [
{
"key": "lc",
"value": "",
"endpoint": {
"serviceName": "tracer-demo",
"ipv4": "192.168.99.1"
}
}
]
}
]
首先看下Span的实现类RealSpan
该类依赖几个核心类
Recorder,用于记录Span
Reporter,用于上报Span给Zipkin
MutableSpan,Span的包装类,提供各种API操作Span
MutableSpanMap,以TraceContext为Key,MutableSpan为Value的Map结构,用于内存中存放所有的Span
RealSpan两个核心方法start, finish
public Span start(long timestamp) {
recorder().start(context(), timestamp);
return this;
}
public void finish(long timestamp) {
recorder().finish(context(), timestamp);
}
分别调用Recorder的start和finish方法,获取跟TraceContext绑定的Span信息,记录开始时间和结束时间,并在结束时,调用reporter的report方法,上报给Zipkin
public void start(TraceContext context, long timestamp) {
if (noop.get()) return;
spanMap.getOrCreate(context).start(timestamp);
}
public void finish(TraceContext context, long finishTimestamp) {
MutableSpan span = spanMap.remove(context);
if (span == null || noop.get()) return;
synchronized (span) {
span.finish(finishTimestamp);
reporter.report(span.toSpan());
}
}
Reporter的实现类AsyncReporter,而AsyncReporter的实现类是BoundedAsyncReporter
static final class BoundedAsyncReporter extends AsyncReporter {
static final Logger logger = Logger.getLogger(BoundedAsyncReporter.class.getName());
final AtomicBoolean closed = new AtomicBoolean(false);
final BytesEncoder encoder;
final ByteBoundedQueue pending;
final Sender sender;
final int messageMaxBytes;
final long messageTimeoutNanos;
final long closeTimeoutNanos;
final CountDownLatch close;
final ReporterMetrics metrics;
BoundedAsyncReporter(Builder builder, BytesEncoder encoder) {
this.pending = new ByteBoundedQueue(builder.queuedMaxSpans, builder.queuedMaxBytes);
this.sender = builder.sender;
this.messageMaxBytes = builder.messageMaxBytes;
this.messageTimeoutNanos = builder.messageTimeoutNanos;
this.closeTimeoutNanos = builder.closeTimeoutNanos;
this.close = new CountDownLatch(builder.messageTimeoutNanos > 0 ? 1 : 0);
this.metrics = builder.metrics;
this.encoder = encoder;
}
}
BoundedAsyncReporter中的几个重要的类:
- BytesEncoder - Span的编码器,将Span编码成二进制,便于sender发送给Zipkin
- ByteBoundedQueue - 类似于BlockingQueue,是一个既有数量限制,又有字节数限制的阻塞队列
- Sender - 将编码后的二进制数据,发送给Zipkin
- ReporterMetrics - Span的report相关的统计信息
- BufferNextMessage - Consumer,Span信息的消费者,依靠Sender上报Span信息
public AsyncReporter build(BytesEncoder encoder) {
if (encoder == null) throw new NullPointerException("encoder == null");
if (encoder.encoding() != sender.encoding()) {
throw new IllegalArgumentException(String.format(
"Encoder doesn't match Sender: %s %s", encoder.encoding(), sender.encoding()));
}
final BoundedAsyncReporter result = new BoundedAsyncReporter<>(this, encoder);
if (messageTimeoutNanos > 0) { // Start a thread that flushes the queue in a loop.
final BufferNextMessage consumer =
new BufferNextMessage(sender, messageMaxBytes, messageTimeoutNanos);
final Thread flushThread = new Thread(() -> {
try {
while (!result.closed.get()) {
result.flush(consumer);
}
} finally {
for (byte[] next : consumer.drain()) result.pending.offer(next);
result.close.countDown();
}
}, "AsyncReporter(" + sender + ")");
flushThread.setDaemon(true);
flushThread.start();
}
return result;
}
当messageTimeoutNanos大于0时,启动一个守护线程flushThread,一直循环调用BoundedAsyncReporter的flush方法,将内存中的Span信息上报给Zipkin
而当messageTimeoutNanos等于0时,客户端需要手动调用flush方法来上报Span信息
再来看下BoundedAsyncReporter中的close方法
@Override public void close() {
if (!closed.compareAndSet(false, true)) return; // already closed
try {
// wait for in-flight spans to send
if (!close.await(closeTimeoutNanos, TimeUnit.NANOSECONDS)) {
logger.warning("Timed out waiting for in-flight spans to send");
}
} catch (InterruptedException e) {
logger.warning("Interrupted waiting for in-flight spans to send");
Thread.currentThread().interrupt();
}
int count = pending.clear();
if (count > 0) {
metrics.incrementSpansDropped(count);
logger.warning("Dropped " + count + " spans due to AsyncReporter.close()");
}
}
这个close方法和FlushThread中while循环相呼应,在close方法中,首先将closed变量置为true,然后调用close.await(),等待close信号量(CountDownLatch)的释放,此处代码会阻塞,一直到FlushThread中finally中调用result.close.countDown();
而在close方法中将closed变量置为true后,FlushThread中的while循环将结束执行,然后执行finally代码块,系统会将内存中还未上报的Span,添加到queue(result.pending)中,然后调用result.close.countDown(); close方法中阻塞的代码会继续执行,将调用metrics.incrementSpansDropped(count)将这些Span的数量添加到metrics统计信息中
@Override public void report(S span) {
if (span == null) throw new NullPointerException("span == null");
metrics.incrementSpans(1);
byte[] next = encoder.encode(span);
int messageSizeOfNextSpan = sender.messageSizeInBytes(Collections.singletonList(next));
metrics.incrementSpanBytes(next.length);
if (closed.get() ||
// don't enqueue something larger than we can drain
messageSizeOfNextSpan > messageMaxBytes ||
!pending.offer(next)) {
metrics.incrementSpansDropped(1);
}
}
前面看到在Recorder的finish方法中,会调用Reporter的report方法,此处report方法,将span转化成字节数组,然后计算出messageSize,添加到queue(pending)中,并记录相应的统计信息
接下来看看两个flush方法,其中flush()方法,是public的,供外部手动调用,而flush(BufferNextMessage bundler)是在FlushThread中循环调用
@Override public final void flush() {
flush(new BufferNextMessage(sender, messageMaxBytes, 0));
}
void flush(BufferNextMessage bundler) {
if (closed.get()) throw new IllegalStateException("closed");
//将队列中的数据,全部提取到BufferNextMessage中,直到buffer(bundler)满为止
pending.drainTo(bundler, bundler.remainingNanos());
// record after flushing reduces the amount of gauge events vs on doing this on report
metrics.updateQueuedSpans(pending.count);
metrics.updateQueuedBytes(pending.sizeInBytes);
// loop around if we are running, and the bundle isn't full
// if we are closed, try to send what's pending
if (!bundler.isReady() && !closed.get()) return;
// Signal that we are about to send a message of a known size in bytes
metrics.incrementMessages();
metrics.incrementMessageBytes(bundler.sizeInBytes());
List<byte[]> nextMessage = bundler.drain();
try {
sender.sendSpans(nextMessage).execute();
} catch (IOException | RuntimeException | Error t) {
// In failure case, we increment messages and spans dropped.
int count = nextMessage.size();
Call.propagateIfFatal(t);
metrics.incrementMessagesDropped(t);
metrics.incrementSpansDropped(count);
if (logger.isLoggable(FINE)) {
logger.log(FINE,
format("Dropped %s spans due to %s(%s)", count, t.getClass().getSimpleName(),
t.getMessage() == null ? "" : t.getMessage()), t);
}
// Raise in case the sender was closed out-of-band.
if (t instanceof IllegalStateException) throw (IllegalStateException) t;
}
}
flush中大致分下面几步
1. 先将队列pending中的数据,全部提取到BufferNextMessage(bundler)中,直到bundler满为止
2. 当bundler准备好,即isReady()返回true,将bundler中的message全部取出来
3. 将取出来的所有message,调用Sender的sendSpans方法,发送到Zipkin
类似于BlockingQueue,是一个既有数量限制,又有字节数限制的阻塞队列,提供了offer,drainTo,clear三个方法,供调用者向queue里存放,提取和清空数据
final class ByteBoundedQueue {
final ReentrantLock lock = new ReentrantLock(false);
final Condition available = lock.newCondition();
final int maxSize;
final int maxBytes;
final byte[][] elements;
int count;
int sizeInBytes;
int writePos;
int readPos;
ByteBoundedQueue(int maxSize, int maxBytes) {
this.elements = new byte[maxSize][];
this.maxSize = maxSize;
this.maxBytes = maxBytes;
}
}
ByteBoundedQueue接受两个int参数,maxSize是queue接受的最大数量,maxBytes是queue接受的最大字节数
ByteBoundedQueue中使用一个二维byte数组elements来存储message,并使用writePos和readPos两个游标,分别记录写和读的位置
ByteBoundedQueue中使用了最典型的可重入锁ReentrantLock,使offer,drainTo,clear等方法是线程安全的
/**
* Returns true if the element could be added or false if it could not due to its size.
*/
boolean offer(byte[] next) {
lock.lock();
try {
if (count == elements.length) return false;
if (sizeInBytes + next.length > maxBytes) return false;
elements[writePos++] = next;
if (writePos == elements.length) writePos = 0; // circle back to the front of the array
count++;
sizeInBytes += next.length;
available.signal(); // alert any drainers
return true;
} finally {
lock.unlock();
}
}
offer方法是添加message到queue中,使用了标准的try-lock结构,即先获取锁,然后finally里释放锁,在获取锁以后
当count等于elements.length时,意味着queue是满的,则不能继续添加
当sizeInBytes + next.length > maxBytes时,意味着该消息加进队列会超出队列字节大小限制,也不能添加新message
如果上面两个条件都不满足,则表明可以继续添加message,将writePos+1,并将message放于writePos+1处
当writePos到达数组尾部,则将writePos置为0,让下一次添加从数组头部开始
然后将count计数器加1,并更新字节总数
最后调用available.signal()来通知其他在lock上等待的线程(在drainTo方法中阻塞的线程)继续竞争线程资源
/** Blocks for up to nanosTimeout for elements to appear. Then, consume as many as possible. */
int drainTo(Consumer consumer, long nanosTimeout) {
try {
// This may be called by multiple threads. If one is holding a lock, another is waiting. We
// use lockInterruptibly to ensure the one waiting can be interrupted.
lock.lockInterruptibly();
try {
long nanosLeft = nanosTimeout;
while (count == 0) {
if (nanosLeft <= 0) return 0;
nanosLeft = available.awaitNanos(nanosLeft);
}
return doDrain(consumer);
} finally {
lock.unlock();
}
} catch (InterruptedException e) {
return 0;
}
}
drainTo方法是提取message到Consumer中消费,如果当时queue里没有消息,则每次等待nanosTimeout,直到queue里存入消息为止
当while循环退出,表明queue中已经有新的message添加进来,可以消费,则调用doDrain方法。
int doDrain(Consumer consumer) {
int drainedCount = 0;
int drainedSizeInBytes = 0;
while (drainedCount < count) {
byte[] next = elements[readPos];
if (next == null) break;
if (consumer.accept(next)) {
drainedCount++;
drainedSizeInBytes += next.length;
elements[readPos] = null;
if (++readPos == elements.length) readPos = 0; // circle back to the front of the array
} else {
break;
}
}
count -= drainedCount;
sizeInBytes -= drainedSizeInBytes;
return drainedCount;
}
doDrain里依然是一个while循环,当drainedCount小于count,即提取的message数量总数小于queue里消息总数时,尝试调用consumer.accept方法
如果accept方法返回true,则将drainedCount加1,并且drainedSizeInBytes加上当前消息的字节数
如果accept方法返回false,则跳出循环,将queue的count减掉提取的总消息数drainedCount,sizeInBytes减去提取的总字节数drainedSizeInBytes
int clear() {
lock.lock();
try {
int result = count;
count = sizeInBytes = readPos = writePos = 0;
Arrays.fill(elements, null);
return result;
} finally {
lock.unlock();
}
}
clear方法,清空队列,这个方法比较简单,就是将所有东西清零,该方法在Reporter的close方法中会被使用
BufferNextMessage是ByteBoundedQueue.Consumer的默认实现
final class BufferNextMessage implements ByteBoundedQueue.Consumer {
private final Sender sender;
private final int maxBytes;
private final long timeoutNanos;
private final List<byte[]> buffer = new LinkedList<>();
long deadlineNanoTime;
int sizeInBytes;
boolean bufferFull;
BufferNextMessage(Sender sender, int maxBytes, long timeoutNanos) {
this.sender = sender;
this.maxBytes = maxBytes;
this.timeoutNanos = timeoutNanos;
}
}
BufferNextMessage中使用一个LinkedList来存储接收的messages
@Override
public boolean accept(byte[] next) {
buffer.add(next); // speculatively add to the buffer so we can size it
int x = sender.messageSizeInBytes(buffer);
int y = maxBytes;
int includingNextVsMaxBytes = (x < y) ? -1 : ((x == y) ? 0 : 1);
// If we can fit queued spans and the next into one message...
if (includingNextVsMaxBytes <= 0) {
sizeInBytes = x;
if (includingNextVsMaxBytes == 0) {
bufferFull = true;
}
return true;
} else {
buffer.remove(buffer.size() - 1);
return false; // we couldn't fit the next message into this buffer
}
}
accept方法,先将message放入buffer,然后调用sender的messageSizeInBytes方法统计下所有buffer消息的总字节数includingNextVsMaxBytes
当includingNextVsMaxBytes大于该buffer的最大字节数maxBytes,则将加入到buffer的message移除
当includingNextVsMaxBytes等于该buffer的最大字节数maxBytes,则将该buffer标记为已满状态,即bufferFull = true
long remainingNanos() {
if (buffer.isEmpty()) {
deadlineNanoTime = System.nanoTime() + timeoutNanos;
}
return Math.max(deadlineNanoTime - System.nanoTime(), 0);
}
boolean isReady() {
return bufferFull || remainingNanos() <= 0;
}
remainingNanos方法中,当buffer为空,则重置一个deadlineNanoTime,其值为当前系统时间加上timeoutNanos,当系统时间超过这个时间或者buffer满了的时候, isReady会返回true,即buffer为准备就绪状态
List<byte[]> drain() {
if (buffer.isEmpty()) return Collections.emptyList();
ArrayList<byte[]> result = new ArrayList<>(buffer);
buffer.clear();
sizeInBytes = 0;
bufferFull = false;
deadlineNanoTime = 0;
return result;
}
drain方法返回buffer里的所有数据,并将buffer清空
isReady方法和drain方法,在BoundedAsyncReporter的flush方法中会被使用
void flush(BufferNextMessage bundler) {
// ...
if (!bundler.isReady() && !closed.get()) return;
// ...
List<byte[]> nextMessage = bundler.drain();
// ...
sender.sendSpans(nextMessage).execute();
}
因为flush是会一直不间断被调用,而这里先调用bundler.isReady()方法,当返回true后才取出所有堆积的消息,一起打包发送给zipkin提高效率
再回过头来看看BoundedAsyncReporter里手动flush方法
@Override public final void flush() {
flush(new BufferNextMessage(sender, messageMaxBytes, 0));
}
在我们分析完BufferNextMessage源代码后,我们很容易得出结论:这里构造BufferNextMessage传入的timeoutNanos为0,所以BufferNextMessage的isReady()方法会永远返回true。
这意味着每次我们手动调用flush方法,会立即将queue的数据用BufferNextMessage填满,并打包发送给Zipkin,至于queue里剩下的数据,需要等到下次FlushThread循环执行flush方法的时候被发送
至此,我们已经分析过Tracer和Span相关的源代码,这对我们后续看Brave和其他框架整合有很大帮助:
Span/RealSpan
Recorder
Reporter/AsyncReporter/BoundedAsyncReporter
BufferNextMessage
ByteBoundedQueue
在下一篇博文中,会继续分析Tracing的初始化过程,以及相关源代码