- 大数据面试必备:Kafka性能优化 Producer与Consumer配置指南
Kafka面试题-在Kafka中,如何通过配置优化Producer和Consumer的性能?回答重点在Kafka中,通过优化Producer和Consumer的配置,可以显著提高性能。以下是一些关键配置项和策略:1、Producer端优化:batch.size:批处理大小。增大batch.size可以使Producer每次发送更多的消息,但要注意不能无限制增大,否则会导致内存占用过多。linger
- Beam2.61.0版本消费kafka重复问题排查
隔壁寝室老吴
kafkalinq分布式
1.问题出现过程在测试环境测试flink的job的任务消费kafka的情况,通过往job任务发送一条消息,然后flinkwebui上消费出现了两条。然后通过重启JobManager和TaskManager后,任务从checkpoint恢复后就会出现重复消费。当任务不从checkpoint恢复的时候,任务不会出现重复消费的情况。由此可见是beam从checkpoint恢复的时候出现了重复消费的问题。
- 支持java8的kafka版本
兮动人
kafka分布式支持java8的kafka版本
文章目录1.Kafka支持Java8的版本范围2.官方建议与兼容性3.版本迁移建议4.关键时间点5.注意事项6.总结1.Kafka支持Java8的版本范围Kafka2.x和3.x版本:Kafka2.x和3.x版本(如2.8.0、3.0.0等)理论上支持Java8,但官方已逐步弃用对Java8的支持。Kafka3.0:官方在3.0版本中弃用Java8(但仍允许使用),并强烈建议升级到Java11或更
- Flink SQL Connector Kafka 核心参数全解析与实战指南
Edingbrugh.南空
kafkaflink大数据flinksqlkafka
FlinkSQLConnectorKafka是连接FlinkSQL与Kafka的核心组件,通过将Kafka主题抽象为表结构,允许用户使用标准SQL语句完成数据读写操作。本文基于ApacheFlink官方文档(2.0版本),系统梳理从表定义、参数配置到实战调优的全流程指南,帮助开发者高效构建实时数据管道。一、依赖配置与环境准备1.1Maven依赖引入在FlinkSQL项目中使用Kafka连接器需添加
- 大数据领域数据工程的消息中间件选型
大数据洞察
大数据与AI人工智能大数据ai
大数据领域数据工程的消息中间件选型关键词:消息中间件、数据工程、大数据处理、选型标准、分布式系统、实时数据流、可靠性保障摘要:在大数据领域的数据工程实践中,消息中间件是构建高可靠、高可扩展数据管道的核心组件。本文从技术架构、功能需求、应用场景等维度,系统解析消息中间件选型的关键要素。通过对比Kafka、Pulsar、RabbitMQ、RocketMQ等主流中间件的技术特性,结合数学模型分析吞吐量、
- 【基础篇-消息队列】——详解 RocketMQ 和 Kafka 的消息模型
小志的博客
消息队列消息队列
目录一、引入前提二、通过示例详解RocketMQ和Kafka的消息模型2.1、示例说明2.2、消息生产端2.3、消息消费端2.3.1、单个消费组2.3.2、多个消费组2.3.3、消费组的内部2.3.4、消费位置本文来源:极客时间vip课程笔记一、引入前提我在看《【基础篇-消息队列】——消息模型中的主题和队列有什么区别》这节课的留言时发现,不少同学对RocketMQ和kafka的消息模型理解的还不是
- Python 解析 Kafka 消息队列的高吞吐架构
```htmlPython解析Kafka消息队列的高吞吐架构Python解析Kafka消息队列的高吞吐架构Kafka是一个分布式、高吞吐量的消息队列系统,广泛应用于实时数据处理和流式计算场景。Python作为一种灵活且易于使用的编程语言,在与Kafka集成时提供了多种库支持,例如kafka-python和confluent-kafka。本文将探讨如何使用Python构建高效的Kafka消息队列应用
- SpringBoot整合kafka报could not be established. Broker may not be available.
ls65535
中间件Connectiontonode0(localhost/12couldnotbeestablished.Brokerma
SpringBoot整合kafka报couldnotbeestablished.Brokermaynotbeavailable.报错日志[AdminClientclientId=adminclient-1]Connectiontonode0(localhost/127.0.0.1:9092)couldnotbeestablished.Brokermaynotbeavailable.[AdminCl
- 大数据领域Kafka的性能优化案例分析
AGI大模型与大数据研究院
大数据kafka性能优化ai
大数据领域Kafka的性能优化案例分析关键词:Kafka、性能优化、吞吐量、延迟、分区策略、消息压缩、监控调优摘要:本文深入探讨ApacheKafka在大数据环境中的性能优化策略。我们将从Kafka的核心架构出发,分析影响性能的关键因素,并通过实际案例展示如何通过配置调优、分区策略优化、消息压缩等技术手段显著提升Kafka集群的性能。文章包含详细的性能测试数据、优化前后的对比分析,以及可落地的优化
- Kafka深入学习及运维工作笔记
喝醉酒的小白
Kafkakafka学习运维
目录标题Kafka深入学习及运维工作笔记一、Kafka学习路径总览1.1学习阶段划分1.2学习资源推荐二、Kafka基础入门2.1Kafka核心概念2.1.1基础架构组件2.1.2关键术语解析2.2Kafka工作原理与核心功能2.2.1消息传递机制2.2.2核心功能特性2.3Kafka安装与基本操作2.3.1环境准备2.3.2安装与启动2.3.3基本操作命令三、Kafka进阶学习3.1Kafka架
- 基于Kafka实现企业级大数据迁移的完整指南
亲爱的非洲野猪
kafka大数据linq
在大数据时代,数据迁移已成为企业数字化转型过程中的常见需求。本文将详细介绍如何利用Kafka构建高可靠、高性能的大数据迁移管道,涵盖从设计到实施的完整流程。一、为什么选择Kafka进行数据迁移?Kafka作为分布式消息系统,具有以下独特优势:高吞吐:单集群可支持每秒百万级消息处理低延迟:端到端延迟可控制在毫秒级持久性:数据可持久化存储,防止丢失水平扩展:可轻松扩展应对数据量增长多消费者:支持多个系
- 使用 Apache Kafka 的关键要点:开发者必知指南
亲爱的非洲野猪
apachekafka分布式
ApacheKafka是一个高吞吐量、分布式、可水平扩展的消息队列系统,广泛应用于实时数据流处理、日志聚合、事件驱动架构等场景。本文将整理Kafka的核心关键点,帮助开发者高效使用Kafka。1.Kafka核心概念(1)基本组件Producer:消息生产者,向Kafka发送数据。Consumer:消息消费者,从Kafka读取数据。Broker:Kafka服务器节点,负责存储和转发消息。Topic:
- RocketMQ--为什么性能不如Kafka?
IT利刃出鞘
MQrocketmqkafka分布式
原文网址:RocketMQ--为什么性能不如Kafka?-CSDN博客简介本文介绍RocketMQ为什么性能不如Kafka?阿里中间件团队对它们做过压测,同样条件下,kafka比RocketMQ快50%左右。为什么RocketMQ参考了Kafka的架构,却不能跟kafka保持一样的性能呢?读消息的方式为了防止消息队列的消息丢失,一般不会放内存里,而是放磁盘上。消息从消息队列的磁盘,发送到消费者,过
- 69、Flink 的 DataStream Connector 之 Kafka 连接器详解
猫猫爱吃小鱼粮
Flink-1.19从0到精通flinkkafka大数据
1.概述Flink提供了Kafka连接器使用精确一次(Exactly-once)的语义在Kafkatopic中读取和写入数据。目前还没有Flink1.19可用的连接器。2.KafkaSourcea)使用方法KafkaSource提供了构建类来创建KafkaSource的实例。以下代码片段展示了如何构建KafkaSource来消费“input-topic”最早位点的数据,使用消费组“my-group
- Kafka 核心术语详解
showyoui
Kafkakafka分布式
文章目录1.集群架构层Cluster(集群)Broker(代理服务器)2.存储架构层Topic(主题)Partition(分区)Message(消息)3.副本机制Leader/FollowerISR(In-SyncReplicas)副本加入ISR的条件副本被移出ISR的条件Leader选举机制ISR维护机制4.客户端Producer(生产者)Consumer(消费者)ConsumerGroup(消
- SSE和Kafka应用场景对比
老兵发新帖
kafka分布式
SSE(Server-SentEvents)和Kafka是两种完全不同定位的技术,分别解决不同场景下的数据流问题。以下是结构化对比:⚡核心定位差异特性SSE(Server-SentEvents)Kafka本质基于HTTP的客户端-服务端单向通信协议分布式消息队列/流处理平台设计目标服务端主动向浏览器推送实时数据高吞吐、持久化、解耦的生产者-消费者模型数据方向单向:服务端→客户端双向:生产者→Kaf
- Spring Boot 集成 Apache Kafka 实战指南
超级小忍
SpringBootspringbootapachekafka
ApacheKafka是一个分布式流处理平台,广泛用于构建实时数据管道、日志聚合系统和事件溯源架构。SpringBoot提供了对Kafka的良好集成支持,使得开发者可以非常便捷地在项目中使用Kafka。本文将手把手教你如何在SpringBoot项目中集成Kafka,包括生产者(Producer)和消费者(Consumer)的实现,并提供完整的代码示例。开发环境准备Java17+Maven或Grad
- 分布式系统中的 Kafka:流量削峰与异步解耦(一)
计算机毕设定制辅导-无忧
#Kafkakafka分布式
引言**在当今数字化时代,分布式系统已成为构建大规模、高并发应用的关键架构。随着业务的快速发展,分布式系统面临着诸多挑战,其中流量高峰和系统组件间的强耦合问题尤为突出。当大量请求瞬间涌入系统,犹如汹涌的潮水,可能导致系统负载过高,响应迟缓,甚至崩溃。而系统中各个组件紧密耦合,相互依赖,牵一发而动全身,一个微小的变化或故障都可能引发连锁反应,影响整个系统的稳定性和可用性。在这样的背景下,Kafka作
- Kafka Streams架构深度解析:从并行处理到容错机制的全链路实践
Edingbrugh.南空
kafkakafka架构
在流处理技术领域,KafkaStreams以其轻量级架构与Kafka生态的深度整合能力脱颖而出。作为构建在Kafka生产者/消费者库之上的流处理框架,它通过利用Kafka原生的分区、副本与协调机制,实现了数据并行处理、分布式协调与容错能力的无缝集成。本文将从架构设计、核心概念到容错机制,全面解析KafkaStreams的技术实现细节。一、KafkaStreams核心架构概述KafkaStreams
- 深度解密消息传递的三大保障
一只牛博
#kafkakafka消息队列消息传递
欢迎来到我的博客,代码的世界里,每一行都是一个故事深度解密消息传递的三大保障前言至少一次传递Kafka如何确保消息至少被传递一次:不同场景下至少一次传递的应用和性能权衡:精确一次传递实现精确一次性传递的机制:性能考虑:最多一次传递实现最多一次传递的机制:注意事项和权衡:前言在数字世界的信息传递中,保障是信息安全的重要支柱。Kafka以其可靠性而著称,但这并非单一的保障,而是三重誓言。本文将引领你穿
- Kafka 主题和分区详解
showyoui
Kafkakafka分布式运维开源大数据
Topic和Paritition基础概念文章目录Topic和Paritition基础概念分区数量设计考量更多分区带来更高吞吐量更多分区需要更多文件句柄Kafka索引机制详解更多分区导致更高不可用性风险更多分区增加端到端延迟更多分区需要客户端更多内存常见问题与解决方案1.主题删除失败2.`__consumer_offsets`占用过多磁盘空间最佳实践建议分区数量规划监控指标性能调优Topic是Kaf
- Redis Stream:实时数据流的处理与存储
foundbug999
redis数据库缓存
RedisStream是Redis5.0引入的一个强大的数据结构,专门用于处理实时数据流。它类似于ApacheKafka和RabbitMQ等消息队列系统,但集成在Redis这个内存数据库中,使得Redis不仅能处理缓存和存储,还能高效地处理实时数据流。本文将深入探讨RedisStream的特性、使用方法以及在实际应用中的优势。一、RedisStream简介RedisStream是一种日志结构,记录
- 探秘Flink Connector加载机制:连接外部世界的幕后引擎
Edingbrugh.南空
flink大数据flink大数据
在Flink的数据处理生态中,SourceFunction负责数据的输入源头,而真正架起Flink与各类外部存储、消息系统桥梁的,则是Connector。从Kafka消息队列到HDFS文件系统,从MySQL数据库到Elasticsearch搜索引擎,Flink通过Connector实现了与多样化外部系统的交互。而这一切交互的基础,都离不开背后强大且精巧的Connector加载机制。接下来,我们将深
- 基于pyspark的北京历史天气数据分析及可视化_实时
大数据CLUB
spark数据分析可视化数据分析数据挖掘sparkhadoop大数据
基于pyspark的北京历史天气数据分析及可视化项目概况[]点这里,查看所有项目[]数据类型北京历史天气数据开发环境centos7软件版本python3.8.18、hadoop3.2.0、spark3.1.2、mysql5.7.38、scala2.12.18、jdk8、kafka2.8.2开发语言python开发流程数据上传(hdfs)->数据分析(spark)->数据写kafka(python)
- 性能监控与智能诊断系统的全流程
智能运维(AIOps)系统架构。核心目标:解决企业面临的性能问题、资源瓶颈、服务异常,实现从被动响应到主动预防、智能诊断的转变。关键特性:全链路覆盖:从日志采集到最终告警展示。实时处理:基于流处理引擎(Storm)快速加工数据。智能分析:引入AI进行根因分析。闭环进化:告警反馈驱动模型训练,系统自学习优化。解耦设计:各模块职责清晰,通过消息队列(Kafka)连接。系统全流程解析(分步详解):起点:
- Spring Boot集成Apache Kafka实现消息驱动
wx_tangjinjinwx
springbootapachekafka
SpringBoot集成ApacheKafka实现消息驱动大家好,我是微赚淘客返利系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!ApacheKafka是一个分布式流处理平台,广泛用于构建实时数据管道和流处理应用程序。SpringBoot提供了对ApacheKafka的集成支持,使得在SpringBoot应用中实现消息驱动变得简单。本文将介绍如何在SpringBoot中集成ApacheK
- Kafka架构全景深度解析与实战
北漂老男人
kafkakafka架构
Kafka架构全景深度解析与实战本文将系统性介绍Kafka架构及核心角色(Broker、Producer、Consumer、Controller)、核心概念(Topic、Partition、Replica、分区机制),深入剖析主流程源码与设计思想,总结优化与高阶应用,结合实际场景与分布式理论,助你全面掌握Kafka。一、Kafka整体架构概览Kafka是分布式、高吞吐、可扩展的消息队列系统,核心架
- Kafka架构全景深度解析与实战
Kafka架构全景深度解析与实战本文将系统性介绍Kafka架构及核心角色(Broker、Producer、Consumer、Controller)、核心概念(Topic、Partition、Replica、分区机制),深入剖析主流程源码与设计思想,总结优化与高阶应用,结合实际场景与分布式理论,助你全面掌握Kafka。一、Kafka整体架构概览+-----------------++--------
- Apache Kafka Connect接口存在任意文件读取漏洞与SSRF漏洞CVE-2025-27817
sublime88
漏洞复现apachekafka分布式安全web安全网络sql
@[toc]免责声明:请勿利用文章内的相关技术从事非法测试,由于传播、利用此文所提供的信息或者工具而造成的任何直接或者间接的后果及损失,均由使用者本人负责,所产生的一切不良后果与文章作者无关。该文章仅供学习用途使用。1.ApacheKafka简介微信公众号搜索:南风漏洞复现文库该文章南风漏洞复现文库公众号首发ApacheKafka是一个分布式的流式数据平台,可以用于构建实时的数据管道和流式应用程序
- Kafka Connect 存在任意文件读取漏洞(CVE-2025-27817)
Byp0ss403小号
在野漏洞复现kafka漏洞复现
免责声明本文档所述漏洞详情及复现方法仅限用于合法授权的安全研究和学术教育用途。任何个人或组织不得利用本文内容从事未经许可的渗透测试、网络攻击或其他违法行为。使用者应确保其行为符合相关法律法规,并取得目标系统的明确授权。对于因不当使用本文信息而造成的任何直接或间接后果,作者概不负责。若您发现本文内容涉及侵权或不当信息,请及时联系我们,我们将立即核实并采取必要措施。一:产品介绍ApacheKafka是
- java责任链模式
3213213333332132
java责任链模式村民告县长
责任链模式,通常就是一个请求从最低级开始往上层层的请求,当在某一层满足条件时,请求将被处理,当请求到最高层仍未满足时,则请求不会被处理。
就是一个请求在这个链条的责任范围内,会被相应的处理,如果超出链条的责任范围外,请求不会被相应的处理。
下面代码模拟这样的效果:
创建一个政府抽象类,方便所有的具体政府部门继承它。
package 责任链模式;
/**
*
- linux、mysql、nginx、tomcat 性能参数优化
ronin47
一、linux 系统内核参数
/etc/sysctl.conf文件常用参数 net.core.netdev_max_backlog = 32768 #允许送到队列的数据包的最大数目
net.core.rmem_max = 8388608 #SOCKET读缓存区大小
net.core.wmem_max = 8388608 #SOCKET写缓存区大
- php命令行界面
dcj3sjt126com
PHPcli
常用选项
php -v
php -i PHP安装的有关信息
php -h 访问帮助文件
php -m 列出编译到当前PHP安装的所有模块
执行一段代码
php -r 'echo "hello, world!";'
php -r 'echo "Hello, World!\n";'
php -r '$ts = filemtime("
- Filter&Session
171815164
session
Filter
HttpServletRequest requ = (HttpServletRequest) req;
HttpSession session = requ.getSession();
if (session.getAttribute("admin") == null) {
PrintWriter out = res.ge
- 连接池与Spring,Hibernate结合
g21121
Hibernate
前几篇关于Java连接池的介绍都是基于Java应用的,而我们常用的场景是与Spring和ORM框架结合,下面就利用实例学习一下这方面的配置。
1.下载相关内容: &nb
- [简单]mybatis判断数字类型
53873039oycg
mybatis
昨天同事反馈mybatis保存不了int类型的属性,一直报错,错误信息如下:
Caused by: java.lang.NumberFormatException: For input string: "null"
at sun.mis
- 项目启动时或者启动后ava.lang.OutOfMemoryError: PermGen space
程序员是怎么炼成的
eclipsejvmtomcatcatalina.sheclipse.ini
在启动比较大的项目时,因为存在大量的jsp页面,所以在编译的时候会生成很多的.class文件,.class文件是都会被加载到jvm的方法区中,如果要加载的class文件很多,就会出现方法区溢出异常 java.lang.OutOfMemoryError: PermGen space.
解决办法是点击eclipse里的tomcat,在
- 我的crm小结
aijuans
crm
各种原因吧,crm今天才完了。主要是接触了几个新技术:
Struts2、poi、ibatis这几个都是以前的项目中用过的。
Jsf、tapestry是这次新接触的,都是界面层的框架,用起来也不难。思路和struts不太一样,传说比较简单方便。不过个人感觉还是struts用着顺手啊,当然springmvc也很顺手,不知道是因为习惯还是什么。jsf和tapestry应用的时候需要知道他们的标签、主
- spring里配置使用hibernate的二级缓存几步
antonyup_2006
javaspringHibernatexmlcache
.在spring的配置文件中 applicationContent.xml,hibernate部分加入
xml 代码
<prop key="hibernate.cache.provider_class">org.hibernate.cache.EhCacheProvider</prop>
<prop key="hi
- JAVA基础面试题
百合不是茶
抽象实现接口String类接口继承抽象类继承实体类自定义异常
/* * 栈(stack):主要保存基本类型(或者叫内置类型)(char、byte、short、 *int、long、 float、double、boolean)和对象的引用,数据可以共享,速度仅次于 * 寄存器(register),快于堆。堆(heap):用于存储对象。 */ &
- 让sqlmap文件 "继承" 起来
bijian1013
javaibatissqlmap
多个项目中使用ibatis , 和数据库表对应的 sqlmap文件(增删改查等基本语句),dao, pojo 都是由工具自动生成的, 现在将这些自动生成的文件放在一个单独的工程中,其它项目工程中通过jar包来引用 ,并通过"继承"为基础的sqlmap文件,dao,pojo 添加新的方法来满足项
- 精通Oracle10编程SQL(13)开发触发器
bijian1013
oracle数据库plsql
/*
*开发触发器
*/
--得到日期是周几
select to_char(sysdate+4,'DY','nls_date_language=AMERICAN') from dual;
select to_char(sysdate,'DY','nls_date_language=AMERICAN') from dual;
--建立BEFORE语句触发器
CREATE O
- 【EhCache三】EhCache查询
bit1129
ehcache
本文介绍EhCache查询缓存中数据,EhCache提供了类似Hibernate的查询API,可以按照给定的条件进行查询。
要对EhCache进行查询,需要在ehcache.xml中设定要查询的属性
数据准备
@Before
public void setUp() {
//加载EhCache配置文件
Inpu
- CXF框架入门实例
白糖_
springWeb框架webserviceservlet
CXF是apache旗下的开源框架,由Celtix + XFire这两门经典的框架合成,是一套非常流行的web service框架。
它提供了JAX-WS的全面支持,并且可以根据实际项目的需要,采用代码优先(Code First)或者 WSDL 优先(WSDL First)来轻松地实现 Web Services 的发布和使用,同时它能与spring进行完美结合。
在apache cxf官网提供
- angular.equals
boyitech
AngularJSAngularJS APIAnguarJS 中文APIangular.equals
angular.equals
描述:
比较两个值或者两个对象是不是 相等。还支持值的类型,正则表达式和数组的比较。 两个值或对象被认为是 相等的前提条件是以下的情况至少能满足一项:
两个值或者对象能通过=== (恒等) 的比较
两个值或者对象是同样类型,并且他们的属性都能通过angular
- java-腾讯暑期实习生-输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A[0]*A[1]*...*A[i-1]*A[i+1]
bylijinnan
java
这道题的具体思路请参看 何海涛的微博:http://weibo.com/zhedahht
import java.math.BigInteger;
import java.util.Arrays;
public class CreateBFromATencent {
/**
* 题目:输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A
- FastDFS 的安装和配置 修订版
Chen.H
linuxfastDFS分布式文件系统
FastDFS Home:http://code.google.com/p/fastdfs/
1. 安装
http://code.google.com/p/fastdfs/wiki/Setup http://hi.baidu.com/leolance/blog/item/3c273327978ae55f93580703.html
安装libevent (对libevent的版本要求为1.4.
- [强人工智能]拓扑扫描与自适应构造器
comsci
人工智能
当我们面对一个有限拓扑网络的时候,在对已知的拓扑结构进行分析之后,发现在连通点之后,还存在若干个子网络,且这些网络的结构是未知的,数据库中并未存在这些网络的拓扑结构数据....这个时候,我们该怎么办呢?
那么,现在我们必须设计新的模块和代码包来处理上面的问题
- oracle merge into的用法
daizj
oraclesqlmerget into
Oracle中merge into的使用
http://blog.csdn.net/yuzhic/article/details/1896878
http://blog.csdn.net/macle2010/article/details/5980965
该命令使用一条语句从一个或者多个数据源中完成对表的更新和插入数据. ORACLE 9i 中,使用此命令必须同时指定UPDATE 和INSE
- 不适合使用Hadoop的场景
datamachine
hadoop
转自:http://dev.yesky.com/296/35381296.shtml。
Hadoop通常被认定是能够帮助你解决所有问题的唯一方案。 当人们提到“大数据”或是“数据分析”等相关问题的时候,会听到脱口而出的回答:Hadoop! 实际上Hadoop被设计和建造出来,是用来解决一系列特定问题的。对某些问题来说,Hadoop至多算是一个不好的选择,对另一些问题来说,选择Ha
- YII findAll的用法
dcj3sjt126com
yii
看文档比较糊涂,其实挺简单的:
$predictions=Prediction::model()->findAll("uid=:uid",array(":uid"=>10));
第一个参数是选择条件:”uid=10″。其中:uid是一个占位符,在后面的array(“:uid”=>10)对齐进行了赋值;
更完善的查询需要
- vim 常用 NERDTree 快捷键
dcj3sjt126com
vim
下面给大家整理了一些vim NERDTree的常用快捷键了,这里几乎包括了所有的快捷键了,希望文章对各位会带来帮助。
切换工作台和目录
ctrl + w + h 光标 focus 左侧树形目录ctrl + w + l 光标 focus 右侧文件显示窗口ctrl + w + w 光标自动在左右侧窗口切换ctrl + w + r 移动当前窗口的布局位置
o 在已有窗口中打开文件、目录或书签,并跳
- Java把目录下的文件打印出来
蕃薯耀
列出目录下的文件文件夹下面的文件目录下的文件
Java把目录下的文件打印出来
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月11日 11:02:
- linux远程桌面----VNCServer与rdesktop
hanqunfeng
Desktop
windows远程桌面到linux,需要在linux上安装vncserver,并开启vnc服务,同时需要在windows下使用vnc-viewer访问Linux。vncserver同时支持linux远程桌面到linux。
linux远程桌面到windows,需要在linux上安装rdesktop,同时开启windows的远程桌面访问。
下面分别介绍,以windo
- guava中的join和split功能
jackyrong
java
guava库中,包含了很好的join和split的功能,例子如下:
1) 将LIST转换为使用字符串连接的字符串
List<String> names = Lists.newArrayList("John", "Jane", "Adam", "Tom");
- Web开发技术十年发展历程
lampcy
androidWeb浏览器html5
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- 架构师之mima-----------------mina的非NIO控制IOBuffer(说得比较好)
nannan408
buffer
1.前言。
如题。
2.代码。
IoService
IoService是一个接口,有两种实现:IoAcceptor和IoConnector;其中IoAcceptor是针对Server端的实现,IoConnector是针对Client端的实现;IoService的职责包括:
1、监听器管理
2、IoHandler
3、IoSession
- ORA-00054:resource busy and acquire with NOWAIT specified
Everyday都不同
oraclesessionLock
[Oracle]
今天对一个数据量很大的表进行操作时,出现如题所示的异常。此时表明数据库的事务处于“忙”的状态,而且被lock了,所以必须先关闭占用的session。
step1,查看被lock的session:
select t2.username, t2.sid, t2.serial#, t2.logon_time
from v$locked_obj
- javascript学习笔记
tntxia
JavaScript
javascript里面有6种基本类型的值:number、string、boolean、object、function和undefined。number:就是数字值,包括整数、小数、NaN、正负无穷。string:字符串类型、单双引号引起来的内容。boolean:true、false object:表示所有的javascript对象,不用多说function:我们熟悉的方法,也就是
- Java enum的用法详解
xieke90
enum枚举
Java中枚举实现的分析:
示例:
public static enum SEVERITY{
INFO,WARN,ERROR
}
enum很像特殊的class,实际上enum声明定义的类型就是一个类。 而这些类都是类库中Enum类的子类 (java.l