TensorFlow学习——CIFAR-10(一)

本文学习参考视频:http://v.youku.com/v_show/id_XMjY4MjYzNzUwNA==.html?spm=a2h0k.8191407.0.0&from=s1.8-1-1.2

CIFAR-10官网: http://www.cs.toronto.edu/~kriz/cifar.html

TensorFlow处理二进制数据格式流程:

读取数据,数据不能一次读进内存中,需要生成相同大小的批次(batch),将batch feed进TensorFlow的计算图中,进而训练,验证;

TensorFlow学习——CIFAR-10(一)_第1张图片


CIFAR-10数据集(多伦多大学,二进制格式存放)

Training Images: 50000彩色图片(32*32),共10类(飞机,汽车,鸟,猫,鹿,狗,蛙,马,船,卡车);

Testing Images: 10000图

每个二进制长度固定,一张图的二进制表述如下(图像类别字节+RGB图片像素字节):

TensorFlow学习——CIFAR-10(一)_第2张图片


CIFAR-10官网供三种数据格式下载(Python,MATLAB,二进制)

Python格式数据需要cPickle库支持load,但此种方式下载,会将数据一次性放入内存中,本次学习目的假设不能一次性将大量数据放入内存,因此选择二进制文件格式;

官网表述如下:

Python / Matlab versions

I will describe the layout of the Python version of the dataset. The layout of the Matlab version is identical. 

The archive contains the files data_batch_1data_batch_2, ..., data_batch_5, as well as test_batch. Each of these files is a Python "pickled" object produced with cPickle. Here is a python2 routine which will open such a file and return a dictionary:

def unpickle(file):
    import cPickle
    with open(file, 'rb') as fo:
        dict = cPickle.load(fo)
    return dict
And a python3 version:
def unpickle(file):
    import pickle
    with open(file, 'rb') as fo:
        dict = pickle.load(fo, encoding='bytes')
    return dict

Binary version

The binary version contains the files  data_batch_1.bin data_batch_2.bin , ...,  data_batch_5.bin , as well as  test_batch.bin . Each of these files is formatted as follows:
<1 x label><3072 x pixel>
...
<1 x label><3072 x pixel>
In other words, the first byte is the label of the first image, which is a number in the range 0-9. The next 3072 bytes are the values of the pixels of the image. The first 1024 bytes are the red channel values, the next 1024 the green, and the final 1024 the blue. The values are stored in row-major order, so the first 32 bytes are the red channel values of the first row of the image. 

下载数据说明(二进制格式文件):

存放目录:D:\cat_VS_dog\TensorFlow-DataSets\CIFAR-10\cifar-10-batches-bin

TensorFlow学习——CIFAR-10(一)_第3张图片

5个bin文件为训练集,将50000张图片压缩成5个bin文件(每个10000张);

测试图片集:test_batch.bin

batches.meta.txt:对训练集内容类别做了解释;


如何读数据及解码:

TensorFlow学习——CIFAR-10(一)_第4张图片

用tf.train.string_input_producer() 制作输入数据的队列;

用tf.FixedLengthRecordReader()读固定长度的数据格式(3073长度);

用tf.decode_raw()解码二进制格式文件;

解码后,将第一个元素提取给label,后面的3072长度reshape图片尺寸32*32;

返回上句提到的参数;


下一篇介绍代码实现





你可能感兴趣的:(TensorFlow,深度学习【理论+实践】)