- 高斯混合模型(Gaussian Mixture Model, GMM)
不想秃头的程序
神经网络语音识别人工智能深度学习网络
高斯混合模型(GaussianMixtureModel,GMM)是一种概率模型,用于表示数据点由多个高斯分布(GaussianDistribution)混合生成的过程。它广泛应用于聚类分析、密度估计、图像分割、语音识别等领域,尤其适合处理非球形簇或多模态数据。以下是GMM的详细介绍:一、核心思想GMM假设数据是由多个高斯分布混合生成的,每个高斯分布代表一个簇(Cluster),并引入隐变量(Lat
- 深度学习详解:通过案例了解机器学习基础
beist
深度学习机器学习人工智能
引言机器学习(MachineLearning,ML)和深度学习(DeepLearning,DL)是现代人工智能领域中的两个重要概念。通过让机器具备学习的能力,机器可以从数据中自动找到函数,并应用于各种任务,如语音识别、图像识别和游戏对战等。在这篇笔记中,我们将通过一个简单的案例,逐步了解机器学习的基础知识。1.1机器学习案例学习1.1.1回归问题与分类问题在机器学习中,根据所要解决的问题类型,任务
- 对话云蝠智能:大模型如何让企业呼叫系统从 “成本中心” 变身 “价值枢纽”?
MARS_AI_
人工智能自然语言处理信息与通信交互
在人工智能重塑企业服务的浪潮中,云蝠智能(南京星蝠科技有限公司旗下品牌)以深厚的技术积累和行业实践,逐步成长为国内智能外呼领域的标杆企业。其发展路径揭示了技术自主创新与场景深度结合的必然性。一、技术架构:全栈自研奠定领先基础云蝠智能的核心竞争力源于其全链路自研技术体系。该架构覆盖语音识别(ASR)、自然语言处理(NLP)、语音合成(TTS)及软交换六大层级,实现从基础设施到操作层的闭环设计。这一分
- 【软件系统架构】系列四:嵌入式软件-NPU(神经网络处理器)系统及模板
目录一、什么是NPU?二、NPU与CPU/GPU/DSP对比三、NPU的工作原理核心结构:数据流架构:四、NPU芯片架构(简化图)五、NPU的优势六、NPU应用场景视觉识别语音识别自动驾驶智能监控AIoT设备七、主流NPU芯片/架构实例八、开发者工具生态(通用)九、NPU集成建议(嵌入式开发场景)十、NPU芯片选型对比+模型部署流程+嵌入式工程模板1.主流NPU芯片选型对比表2.模型部署流程(以T
- DIY语音控制车辆玩具全攻略:从硬件组装到功能实现
欧阳天羲
硬件工程语音识别自动驾驶
一、设备清单与成本估算1.1硬件组件列表组件名称价格(元)备注ArduinoUno兼容板7.04控制核心,支持多传感器接入DFRobot离线语音识别模块105支持10条自定义语音指令L298N电机驱动板5双路电机驱动,带散热片直流减速电机×2(JGB37-520)3012V供电,150转/分钟SG90微型舵机5控制前轮转向HC-SR04超声波传感器2.45测距范围2-400cm18650锂电池(3
- GRU与Transformer结合:新一代序列模型
AI大模型应用工坊
grutransformer深度学习ai
GRU与Transformer结合:新一代序列模型关键词:GRU、Transformer、序列模型、结合、深度学习摘要:本文深入探讨了GRU与Transformer结合所形成的新一代序列模型。先介绍了GRU和Transformer各自的核心概念及工作原理,然后阐述了二者结合的原因、方式和优势。通过代码实际案例展示了如何搭建结合的模型,还探讨了其在自然语言处理、语音识别等领域的实际应用场景。最后对未
- 数字人分身系统源码搭建定制化开发,支持OEM
在人工智能技术蓬勃发展的今天,数字人分身系统凭借其独特的交互性和广泛的应用场景,成为了众多企业和开发者关注的焦点。从虚拟主播、智能客服到数字员工,数字人分身系统正逐渐渗透到各个领域。本文将详细阐述数字人分身系统源码搭建与定制化开发的全流程,为技术爱好者和企业开发者提供全面的技术参考。一、数字人分身系统概述数字人分身系统是一个综合性的技术解决方案,它融合了计算机图形学、人工智能、语音识别与合成、自然
- 【造工具-2】用SenceVoice,实现本地的语音转文本小工具
zhulangfly
AIAISTTASR
说到语音转文本,有两种说法,自动语音识别(ASR,AutomaticSpeechRecognition)和语音转文本(STT,Speech-to-Text),本质上都是通过算法将语音信号转化为可处理的文本形式的技术,两者的核心功能和应用目标完全一致。如果有区别的话,ASR更常见于学术研究和技术文档中,STT则更多应用于产品功能描述。ASR常与其他模块(如VAD、说话人分离)并列描述,体现其在技
- 华为Pura 70怎么语音翻译?语音翻译详解
C_19870
华为经验分享
在智能手机功能日益丰富的今天,语音翻译已成为许多手机用户的重要需求之一。华为Pura70,作为华为系列中的一款高端机型,其内置的语音翻译功能在准确性和便捷性上都表现出色。本文将详细介绍华为Pura70在语音翻译方面的表现、操作步骤,并探讨其他可实现语音翻译操作的软件,特别是“同声传译王”。华为Pura70手机在语音翻译时的表现华为Pura70内置的语音翻译功能凭借其先进的语音识别和翻译技术,为用户
- RNN、LSTM、GRU详解
昔颜1121
人工智能rnnpython
RNN、LSTM、GRU详解在深度学习领域,序列数据(如语音识别、机器翻译、文本生成等)广泛应用于自然语言处理(NLP)、时间序列预测、语音和视频处理等任务中。针对序列数据,循环神经网络(RNN,RecurrentNeuralNetwork)及其改进版本——长短时记忆网络(LSTM,LongShort-TermMemory)和门控循环单元(GRU,GatedRecurrentUnit)成为处理时序
- 利用FunASR搭建自己的语音转文本服务器(有手就行)
提示:利用阿里巴巴开源的FunASR工具包,搭建语音转文本服务,通过网页实现免费的语音转文本服务。目录前言一、FunASR是什么?二、服务搭建2.1服务器准备2.2安装docker2.3下载并启动镜像2.4启动ASR服务三、下载客户端开始工作总结前言语音转文本是我们经常面对的日常任务,都=是智能客服、会议记录、实时字幕等场景核心的功能。然而,传统语音识别系统往往面临高延迟、低准确率或复杂部署的挑战
- 【使用Unimrcp和Funasr构建呼叫中心语音识别服务端】
cc_ai_cn
呼叫中心语音识别语音识别人工智能
使用Unimrcp和Funasr构建呼叫中心语音识别服务端1.编译及运行unimrcp2.新增funasr-recog,支持funasr识别3.启动unimrcp4.启动funasr5.freeswitch呼叫测试1.编译及运行unimrcp此次使用的是unimrcp1.6版本,先下载unimrcp-deps-1.6.0以及unimrcp-1.6.0进行构建,此处不过多赘述。2.新增funasr-
- 第9章:听声辨味的玄机——语音识别如何破解厨房噪音难题
第9章:听声辨味的玄机——语音识别如何破解厨房噪音难题声学特征解析、深度降噪与工业部署全链路解密工业级挑战场景:在上海四季酒店中央厨房的热浪区域(平均声压92dB),行政主厨需同时管理六口燃气灶、两台对流烤箱和三台洗碗机。当他在油烟机轰鸣中喊出"三号灶文火收汁"时,噪音包含:炒锅爆炒声(65-85dB@4-8kHz)高压蒸汽喷射(75-90dB@2-4kHz)金属撞击噪声(80-95dB@1-8k
- 世界因你不同:李开复自传
浦东新村轱天乐
读书笔记职场发展
读完后闭上眼睛想一想,为什么李开复值得学习?第一,他工作能力很强。他并不只是在名校、名企呆过,而是最后都做到了很高的位置。11岁从台湾去美国读书,博士在CMU,毕业后先后在苹果、微软、谷歌工作过。CMU读博期间开发了基于统计方法的语音识别技术,拿到了CMU终身教职后,放弃这一职位加入了苹果。微软时期牵头成立了微软中国研究院(后改名微软亚洲研究院),这个传奇的地方在深度学习大火之后,诞生出了很多牛人
- 开发者注意:鸿蒙APP语音识别常见问题全解析(含可跑Demo)
harmonyos
摘要在鸿蒙(HarmonyOS)应用开发中,语音识别是很多智能功能的核心入口,比如语音助手、语音输入、语音搜索等。但不少开发者会遇到"语音识别无法使用"的问题:调用没反应、识别不返回、报权限错误……这篇文章将从权限配置、API调用、设备支持、网络状态等多个角度入手,结合实际代码和典型使用场景,帮你一条一条查清楚到底问题出在哪。引言随着语音交互逐渐成为主流,鸿蒙系统也提供了对ASR(Automati
- 开源(离线)中文语音识别ASR(语音转文本)工具整理
切糕师学AI
#语音识别asr与语音合成STT语音识别人工智能深度学习
开源(离线)中文语音识别ASR(语音转文本)工具整理目录文章目录目录@[toc]openai的开源工具:whisperwhisper介绍引用ASRT语音识别项目ASRT介绍引用微软语音服务(付费)微软语音服务介绍实时语音转文本批量转录自定义语音引用PaddleSpeechPaddleSpeech介绍引用openai的开源工具:whisperwhisper介绍OpenAI在2022年9月21日开源了
- HarmonyOS SDK:Image Classification 能力进行图片识别
在鸿蒙应用开发中,HarmonyOSSDK提供了丰富的AI能力接口,开发者可以快速集成语音识别、图像识别、自然语言处理等智能功能到自己的应用中。作为一名鸿蒙开发者,在实际项目中我深刻体会到这些AI能力对提升用户体验和产品智能化水平的重要性。以图像识别为例,借助HarmonyOSSDK中的ImageClassificationAPI,我们可以轻松实现图片内容的自动识别与分类。通过调用系统提供的AI引
- 《Whisper模型版本及下载链接》
空云风语
人工智能深度学习神经网络whisper
Whisper模型版本及下载链接Whisper是OpenAI开发的语音识别模型,以下按模型规模从小到大排列,包含不同语言版本及通用版本:1.Tiny系列(轻量级)tiny.en.pt(英文专用):https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d
- 《Whisper:开启语音识别新时代的钥匙》
空云风语
人工智能深度学习神经网络whisper语音识别人工智能
Whisper模型:技术革新的基石在当今科技飞速发展的时代,自动语音识别(ASR)技术作为人工智能领域的关键分支,正深刻地改变着人们的生活与工作方式。从智能语音助手到实时字幕生成,从语音交互设备到智能客服系统,ASR技术无处不在,为人们带来了前所未有的便利与效率提升。而Whisper模型,作为ASR技术中的一颗璀璨明星,以其卓越的性能和独特的技术架构,成为了推动语音识别技术发展的重要力量。Whis
- 用Google Cloud Speech-to-Text API进行音频转录
huluwaqimotuo
音视频
###技术背景介绍随着人工智能技术的不断发展,语音识别已成为我们生活中不可或缺的一部分。GoogleCloudSpeech-to-TextAPI是其中的佼佼者,能够从音频文件中提取文本信息,减少人工转录的麻烦。这篇文章将指导你如何使用`GoogleSpeechToTextLoader`来加载和转录音频文件。###核心原理解析`GoogleSpeechToTextLoader`是一个工具,它通过调用
- 微服务及时通讯系统-服务端-开发阶段与功能介绍
C++忠实粉丝
微服务及时通讯系统-后台服务器实现微服务架构云原生
个人主页:C++忠实粉丝欢迎点赞收藏✨留言✉加关注本文由C++忠实粉丝原创微服务及时通讯系统-服务端-开发阶段与功能介绍收录于专栏[微服务及时通讯系统-后台服务器实现]目录开发阶段与功能介绍聊天室后台服务器实现:功能需求确定阶段:框架设计:聊天室子服务拆分:消息转发子服务:消息存储子服务:语音识别子服务:文件管理子服务:宝子们!!!我又开始新的专栏啦~这一次你们可以跟着我一步一步完成这个开源项目!
- [特殊字符] 一键搭建AI语音助理:基于DashScope+GRadio的智能聊天机器人技术全解
来自于狂人
人工智能机器人
一、项目核心技术架构(图1)交互层核心模块pyaudio实时采集流式响应PCM编码GRadio界面状态控制实时对话展示语音输出历史记录管理ASR回调类ASR语音识别聊天处理引擎GPT大模型处理语音合成回调TTS语音合成语音输入DashScopeAPI二、四大核心技术实现1.智能语音识别引擎(附关键源码注释)classASRCallback(TranslationRecognizerCallback
- 华小妹 AI 数字人又来添新功能,突破语言边界
广州华锐视点
人工智能
华小妹AI数字人功能强大,不是徒有其表的花瓶。作为一款极具创新性的AI数字人,华小妹AI数字人擅长跳舞,能精准介绍产品,可通过虚拟场景带客户参观各类场所,还能用丰富肢体语言交流,具备空间定位能力,语音识别技术先进,能精准识别各种语音指令。如今华小妹AI数字人上新了支持多语言交流的功能,涵盖常见和小众语言,打破语言障碍,拓展了应用场景和服务范围。华小妹AI数字人上新的多语言交流功能堪称一大亮点,支持
- AI 大模型原理与应用:大模型训练突破万张卡和万亿参数 MOE 这两个临界点
AI大模型应用之禅
人工智能
AI大模型原理与应用:大模型训练突破万张卡和万亿参数MOE这两个临界点大模型、训练、万张卡、万亿参数、MOE、Transformer、深度学习、自然语言处理1.背景介绍近年来,深度学习技术取得了飞速发展,大规模人工智能模型的训练成为一个重要的研究方向。大模型是指参数量达到数十亿甚至万亿级别的人工智能模型,它们在自然语言处理、计算机视觉、语音识别等领域展现出强大的能力。然而,大模型的训练也面临着巨大
- 基于Transformer的语音识别模型:从理论到实现
AI智能探索者
transformer语音识别深度学习ai
基于Transformer的语音识别模型:从理论到实现关键词:Transformer、语音识别、注意力机制、序列建模、端到端学习、自注意力、语音特征提取摘要:本文将深入探讨基于Transformer架构的语音识别系统。从传统的语音识别方法出发,我们将一步步解析Transformer如何革新语音识别领域,详细讲解其核心原理、架构设计和实现细节。通过理论讲解、数学推导和代码实践相结合的方式,帮助读者全
- 自然语言处理之文本分类:Transformer:文本分类数据集分析
zhubeibei168
自然语言处理自然语言处理分类transformer数据挖掘人工智能支持向量机
自然语言处理之文本分类:Transformer:文本分类数据集分析自然语言处理基础NLP概述自然语言处理(NaturalLanguageProcessing,NLP)是人工智能领域的一个重要分支,专注于使计算机能够理解、解释和生成人类语言。NLP技术广泛应用于文本分类、情感分析、机器翻译、问答系统、语音识别等场景。其核心挑战在于理解语言的复杂性和多义性,以及处理大
- 2025年开源AI模型综合对比与推荐
目录2025年开源AI模型综合对比与推荐引言文本生成模型简介对比表格评价图像生成模型简介对比表格评价视频生成模型简介对比表格评价语音识别模型简介对比表格评价语音合成模型简介对比表格评价总结参考文献2025年开源AI模型综合对比与推荐引言人工智能(AI)技术在2025年继续蓬勃发展,开源AI模型在文本生成、图像生成、视频生成、语音识别和语音合成等领域展现出卓越的性能。这些模型不仅在技术上与专有模型不
- 循环神经网络RNN
Xyz_Overlord
rnn深度学习人工智能
一、循环神经网络概念以及应用场景1.概念处理序列的一种神经网络计算模型。2.序列数据数据是根据时间步生成的,前后数据有关联关系,数据可以是数字、文字序列等等。3.应用场景自然语言处理(NLP)、时间序列预测、语音识别、音乐生成......4.自然语言处理概述主要是通过计算机算法来理解自然语言。NLP涵盖了从文本到语音、从语音到文本的各个方面,它涉及多种技术,包括语法分析、语义理解、情感分析、机器翻
- 使用Xinference与LangChain实现强大的模型推理
yunwu12777
langchain
技术背景介绍随着深度学习和机器学习技术的快速发展,如何有效地管理和部署大型语言模型(LLM)成为了一项重要课题。Xinference是一款强大的推理库,它能够无缝地为LLMs、语音识别模型以及多模态模型提供服务。基于XorbitsInference技术,用户可以通过简单的命令来快速部署和服务这些模型,无论是在本地机器还是在分布式集群中。核心原理解析Xinference的设计目标是降低使用复杂模型的
- 基于Python的LSTM循环神经网络模型实战
缑宇澄
python
在处理具有时间序列特性的数据时,传统神经网络往往难以捕捉数据间的时序依赖关系。而循环神经网络(RecurrentNeuralNetwork,RNN)及其变体——长短期记忆网络(LongShort-TermMemory,LSTM),凭借独特的记忆机制,能够有效处理序列数据,在语音识别、自然语言处理、股票价格预测等领域展现出强大的优势。本文将深入解析LSTM的原理,并通过Python代码进行实战,展示
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多