超全AI速查表|神经网络、机器学习、深度学习

原文链接: http://bdtc2019.hadooper.cn/

超全AI速查表|神经网络、机器学习、深度学习_第1张图片

(图片付费下载自视觉中国)

作者 | Stefan Kojouharov
编译 | ronghuaiyang
来源 | AI算法与图像处理(ID:AI_study)

【导读】过去的几个月中,我都在收集AI速查表。我时不时的分享给同学和朋友,他们经常问我要。所以我决定整理一下,发出来。为了让这件事情更加有趣,我对每个主题加了点描述。

这个应该是史上最全的了,希望你喜欢...


神经网络

超全AI速查表|神经网络、机器学习、深度学习_第2张图片

神经网络图

超全AI速查表|神经网络、机器学习、深度学习_第3张图片

超全AI速查表|神经网络、机器学习、深度学习_第4张图片

机器学习概述

超全AI速查表|神经网络、机器学习、深度学习_第5张图片


机器学习: Scikit-learn算法

这个速查表可以帮助你为你的任务找到合适的estimator,这个是工作中最困难的地方。流向图帮助你查找文档,estimator也能大致的帮助你更加好的理解你的问题,以及如何解决问题。

超全AI速查表|神经网络、机器学习、深度学习_第6张图片


Scikit-Learn

Scikit-learn 是一个开源的机器学习Python库。功能包括分类,回归,聚类,算法包括支持向量机,随机森林,梯度提升,k均值和密度聚类算法。而且和Python的数值处理库如Numpy和SciPy能够互通。

超全AI速查表|神经网络、机器学习、深度学习_第7张图片


机器学习 : 算法速查表

这是一个来自Microsoft Azure的机器学习速查表,你可以为你的预测任务选取合适的机器学习的算法。首选,速查表会问你数据的形式,然后给你一个适合你的任务的最佳的算法建议。

超全AI速查表|神经网络、机器学习、深度学习_第8张图片


用Python做数据科学

超全AI速查表|神经网络、机器学习、深度学习_第9张图片

超全AI速查表|神经网络、机器学习、深度学习_第10张图片


TensorFlow

在2017年的5月,Google发布了第二代的TPU,第二代的TPU有高达180 teraflops的性能,64个TPU的集群可以提供11.5 petaflops的计算能力。

超全AI速查表|神经网络、机器学习、深度学习_第11张图片


Keras

在2017年,Google的TensorFlow决定在其核心库中支持Keras。Keras是一套接口,而不是一个机器学习的框架。它提供一套高级的,更加直接的抽象功能,使得配置一个神经网络更加的容易,而不用管背后是哪个计算库。

超全AI速查表|神经网络、机器学习、深度学习_第12张图片


Numpy

Numpy是一个没有优化过的解释器,目的是用Python来实现CPython中的东西。使用这个版本的数学计算往往比较慢。Numpy提供了多维数组的计算和操作,非常的有效,当需要重用代码时,大部分的内部的循环都是使用Numpy。

超全AI速查表|神经网络、机器学习、深度学习_第13张图片


Pandas

这个名字是来自于 “panel data”,是一个经济学的词语,用来处理多维度的结

构化的数据。

超全AI速查表|神经网络、机器学习、深度学习_第14张图片


数据整理 data wrangler

"data wrangler"这个词开始于流行文化的渗透。在2017年的电影 Kong: Skull Island,其中一个角色,被介绍为“Steve Woodward, our data wrangler”。

超全AI速查表|神经网络、机器学习、深度学习_第15张图片

超全AI速查表|神经网络、机器学习、深度学习_第16张图片


Scipy

Scipy是基于Numpy的数组的对象构建的,是Numpy的一部分,包括的工具如 Matplotlib, pandas and SymPy,还有一个科学计算的扩展库。Numpy和其他的一些科学计算工具如 MATLAB, GNU Octave, and Scilab很像。Numpy的技术栈也有时候叫做SciPy 技术栈。

超全AI速查表|神经网络、机器学习、深度学习_第17张图片


Matplotlib

matplotlib是一个基于Python的绘图库,是Numpy的一个扩展。提供了面向对象的API。

pyplot是一个matplotlib的模块,提供了类似Matlab的绘图接口,可以像Matlab一样简单易用,而且免费。

超全AI速查表|神经网络、机器学习、深度学习_第18张图片


资源

数据科学速查表: https://www.datacamp.com/community/tutorials/python-data-science-cheat-sheet-basics

数据整理速查表: https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf

数据整理: https://en.wikipedia.org/wiki/Data_wrangling

Keras速查表: https://www.datacamp.com/community/blog/keras-cheat-sheet#gs.DRKeNMs

Keras: https://en.wikipedia.org/wiki/Keras

机器学习速查表: https://ai.icymi.email/new-machinelearning-cheat-sheet-by-emily-barry-abdsc/

机器学习速查表: https://docs.microsoft.com/en-in/azure/machine-learning/machine-learning-algorithm-cheat-sheet

机器学习速查表: http://peekaboo-vision.blogspot.com/2013/01/machine-learning-cheat-sheet-for-scikit.html

Matplotlib速查表: https://www.datacamp.com/community/blog/python-matplotlib-cheat-sheet#gs.uEKySpY

Matpotlib: https://en.wikipedia.org/wiki/Matplotlib

神经网络速查表: http://www.asimovinstitute.org/neural-network-zoo/

神经网络图速查表: http://www.asimovinstitute.org/blog/

神经网络: https://www.quora.com/Where-can-find-a-cheat-sheet-for-neural-network

Numpy速查表: https://www.datacamp.com/community/blog/python-numpy-cheat-sheet#gs.AK5ZBgE

NumPy: https://en.wikipedia.org/wiki/NumPy

Pandas速查表: https://www.datacamp.com/community/blog/python-pandas-cheat-sheet#gs.oundfxM

Pandas: https://en.wikipedia.org/wiki/Pandas_(software)

Pandas速查表: https://www.datacamp.com/community/blog/pandas-cheat-sheet-python#gs.HPFoRIc

Scikit速查表: https://www.datacamp.com/community/blog/scikit-learn-cheat-sheet

Scikit-learn: https://en.wikipedia.org/wiki/Scikit-learn

Scikit-learn速查表: http://peekaboo-vision.blogspot.com/2013/01/machine-learning-cheat-sheet-for-scikit.html

Scipy速查表: https://www.datacamp.com/community/blog/python-scipy-cheat-sheet#gs.JDSg3OI

SciPy: https://en.wikipedia.org/wiki/SciPy

TesorFlow速查表: https://www.altoros.com/tensorflow-cheat-sheet.html

原文链接:

(*本文为 AI科技大本营转载文章,转 载请联系原作者)

精彩推荐


2019 中国大数据技术大会(BDTC)历经十一载,再度火热来袭! 豪华主席阵容及百位技术专家齐聚,15 场精选专题技术和行业论坛,超强干货+技术剖析+行业实践立体解读,深入解析热门技术在行业中的实践落地。 【早鸟票】 【特惠学生票】 限时抢购,扫码了解详情!

超全AI速查表|神经网络、机器学习、深度学习_第19张图片

推荐阅读

  • 肖仰华:知识图谱构建的三要素、三原则和九大策略 | AI ProCon 2019

  • 微软语音AI技术与微软听听文档小程序实践 | AI ProCon 2019

  • AI落地遭“卡脖子”困境:为什么说联邦学习是解决良方?

  • 10分钟搭建你的第一个图像识别模型 | 附完整代码

  • 阿里披露AI完整布局,飞天AI平台首次亮相

  • 程序员因接外包坐牢 456 天!两万字揭露心酸经历

  • 限时早鸟票 | 2019 中国大数据技术大会(BDTC)超豪华盛宴抢先看!

  • Pandas中第二好用的函数 | 优雅的Apply

  • 阿里开源物联网操作系统 AliOS Things 3.0 发布,集成平头哥 AI 芯片架构

  • 雷声大雨点小:Bakkt「见光死」了吗?

640?wx_fmt=png

你点的每个“在看”,我都认真当成了喜欢

你可能感兴趣的:(超全AI速查表|神经网络、机器学习、深度学习)