分布式文件系统与HDFS

原文链接: http://www.cnblogs.com/nsh123/p/11061832.html

HDFS,它是一个虚拟文件系统,用于存储文件,通过目录树来定位文件;其次,它是分布式的,由很多服务器联合起来实现其功能,集群中的服务器有各自的角色。

HDFS 的设计适合一次写入,多次读出的场景,且不支持文件的修改。适合用来做数据分析,并不适合用来做网盘应用。

模块名称

模块介绍

Common

其他组件的公共依赖模块

HDFS

分布式存储模块提供高吞吐量的数据访问

Mapreduce

分布式计算模块

Yarn

作业调度和集群资源管理模块

 

 

 

 




 
思考!!!!!!!!!

什么是大数据? 为什么对于网络要求越来越高? 1.信息量越来越大 2.用网设备多 3.响应时间要短 01.web的响应时间 02.猜你喜欢 ==> 后台计算(大数据) 大数据技术是海量数据的处理和计算的技术 Nginx Tomcat 数据库 普通运维 大数据运维:特别的维护大数据组件(多、杂、难) 1、大数据组件的安装 2、大数据架构 3、大数据的配置文件及原理有一定的了解 Hadoop Zookeeper Hive Hbase Flume Kafka Spark Flink Mahout。。。 分布式原理 => 典型的是hadoop

  

Hadoop是大数据的基础组件。基本上所有的其他组件都依赖于Hadoop

简单的数据处理是直接将数据加载到内存,进行计算
然而数据量到内存瓶颈,会OOM(out of memory)

分布式存储:
将数据以块为单位切割,并发送到所有的分布式存储节点
但是,数据对于用户来说,显示为单一的文件

相当于raid1 + raid0,以软件形式实现的,不需要额外的硬件维护

分布式计算:
多台主机的算力,协同在一起,共同提供计算


大数据平台建设:

搭建的两个设想:
1、用桥接模式,每人贡献一个虚拟的节点。分组组成多个集群。
2、用NAT模式,每人都搭建一个虚拟的集群。

我们可以使用NAT模式,指定三台虚拟机,每台2G

环境搭建:

 

1、修改ip:

 hadoop01   10.0.0.101
 hadoop02   10.0.0.102
 hadoop03   10.0.0.103 

2、修改hosts文件

 10.0.0.101 hadoop01 
 10.0.0.102 hadoop02 
 10.0.0.103 hadoop03 

 

   修改完之后记得分发 三台上都要

3、安装jdk(三台都要)

 1)解压 /soft
 2)环境变量 /etc/profile
 export JAVA_HOME=/soft/jdk1.8.0_131
 export PATH=$PATH:$JAVA_HOME/bin 
 3)source
 source /etc/profile
 4)验证
 java -version
java version "1.8.0_131"
Java(TM) SE Runtime Environment (build 1.8.0_131-b11)
Java HotSpot(TM) 64-Bit Server VM (build 25.131-b11, mixed mode)
 5)将/soft和/etc/profile发送到其他节点
 scp -r /soft/ 10.0.0.102:/
 scp -r /soft/ 10.0.0.103:/
 scp /etc/profile 10.0.0.102:/etc
 scp /etc/profile 10.0.0.103:/etc

 

4、Hadoop安装

1)分配节点:

 master ==> hadoop01
 slave节点 => hadoop01-hadoop03

 

2)安装

 1、解压+环境变量 
 tar -xzvf ~/hadoop-2.7.3.tar.gz -C /soft/
 export HADOOP_HOME=/soft/hadoop-2.7.3
 export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin

  

 2、配置四个配置文件
   hadoop-env.sh
   core-site.xml
   hdfs-site.xml
   slaves

配置文件所在目录为/soft/hadoop-2.7.3/etc/hadoop
vi hadoop-env.sh
#第25行改为
 export JAVA_HOME=/soft/jdk1.8.0_131

vi  core-site.xml  ###将之前的文件清空并粘贴如下内容



    
    
        fs.defaultFS
        hdfs://hadoop01:8020
    
    
    
        hadoop.tmp.dir
        /soft/hadoop-2.7.3/data/tmp
    


vi hdfs-site.xml    ### 将之前的文件清空并粘贴如下内容



    
    
        dfs.replication
        3
    
    
    
        dfs.namenode.secondary.http-address
        hadoop03:50090
    


vi  slaves  ### 将之前的文件清空并粘贴如下内容
hadoop01
hadoop02
hadoop03  
 3、分发hadoop包和环境变量
将hadoop01上的hadoop整个文件夹所有文件复制到其他两台机子上
 
 4、在保证之前配置文件全部ok的前提下,格式化文件系统
格式化hdfs文件系统(只需一次)
 [centos@hadoop01 ~]$ hdfs namenode -format

 

5 配置hadoop01到hadoop[01-03]的免密登录

   ssh-keygen -t rsa 
   ssh-copy-id hadoop01
   ssh-copy-id hadoop02
   ssh-copy-id hadoop03 

6、在hadoop01上启动所有进程

 
   
start-dfs.sh  

7、正常条件下 用jps查看进程

 
   
[hadoop01]
 18946 DataNode
 18843 NameNode
 19196 Jps
 ​
 [hadoop02]
 10194 Jps
 10125 DataNode
 ​
 [hadoop03]
 17680 SecondaryNameNode
 17603 DataNode
 17742 Jps

 

关闭防火墙

 systemctl stop firewalld
 systemctl disable firewalld

 

HDFS相关命令

 启动hdfs    //在master启动
   start-dfs.sh
   
 在hdfs上创建数据(文件夹) 
   hdfs dfs -mkdir xxx
   hdfs dfs -touchz 1.txt
   
 改:hdfs文件不支持随意改动,但是文件可以追加
   hdfs dfs -appendToFile slaves /1.txt
   
 本地文件上传到hdfs
   hdfs dfs -put slaves /
 ​
 hdfs文件下载到本地
   hdfs dfs -get /slaves .
 ​
 查看hdfs数据  
   hdfs dfs -ls /
   hdfs dfs -cat /slaves

 

HDFS进程:

 Namenode      //名称节点      //存放元数据(索引数据):fsimage + edits
           //web端口   50070
           //集群通信端口  8020
 Datanode      //数据节点      //存放真实的块数据:128M一次切割
           //web端口   50075
           //集群通信端口  50020
 Seondarynamenode  //辅助名称节点    //辅助namenode进行元数据的更新
           //web端口   50090
           //集群通信端口  50090
 在存储时候,真实数据存储在datanode上  

分布式文件系统与HDFS_第1张图片

 

注意:  hdfs进程详解

进程名称

进程详解

Namenode

是整个文件系统的管理节点。它维护着整个文件系统的文件目录树,文件/目录的元信息和每个文件对应的数据块列表。接收用户的操作请求。

Datanode

提供真实文件数据的存储服务。

SecondaryNamenode

辅助Namenode保存元数据,提供元数据的恢复

 

 

 

 

 

 

    hdfs相关端口说明

  hadoop守护进程一般同时运行RPC和HTTP两个服务器,RPC服务器支持守护进程进的通信, HTTP服务器则提供与用户交互的Web页面

进程名称

RPC端口

HTTP端口

Namenode

8020

50070

Datanode

50020

50075

SecondaryNamenode

50090

50090

 

 

 

 小要求:jdk安装包(.tar.gz)传到hdfs上,并查看块数据(分了几个块?一个块多大?)


 hdfs dfs mkdir /
 hdfs dfs put jdk-8u131-linux-x64.tar.gz /
 得出结论,数据是按照128M进行切块存储,每个块单独作为存储单位

HDFS中的真实数据:

 镜像数据:以fsimage开头,存放其中包含 HDFS文件系统的所有目录和文件信息
 编辑日志:以edits开头,存放用户对文件的写操作
 所以,一个文件,在经历过编辑日志里面记录的所有操作后才会形成fsimage里面的一个inode
 在默认条件下,edits和fsimage会周期性的每一小时,进行一次更新,形成最新的数据,保证hdfs的元数据的最新

回收站:

 生产环境下务必要配置(后悔药)
 
 
     
     fs.trash.interval
 1440   
 
 
 清除回收站超时未删除的文件
 [centos@hadoop01 ~]$ hdfs dfs -expunge

HDFS中的不成文规定:

 1M数据 = 1x1024x1024 = 1048576个 ====> 对应namenode内存1000M
 
 禁止存储大量小文件
 如果生成了,怎么处理?

 


 

 

转载于:https://www.cnblogs.com/nsh123/p/11061832.html

你可能感兴趣的:(分布式文件系统与HDFS)