blockManager主要原理:
blockmanager位于org.apache.spark.storage中,包含四个重要的组件:DiskStore,MemoryStore,Blocktransferservice,ConnectionManager。其中,diskStore负责对磁盘上的数据读写;memoryStore负责内存数据的读写,connectionManager负责到远程节点的连接,BlockManagerWorker负责读写远程节点的的数据。当blockManager启动创建后会向blockManagerMaster注册,其中blockManagerMaster位于driver上,管理者数据的元数据,比如包含了blockmanagerInfo,blockStatus,当blockManagerMaster进行了增删改操作,blockManager会通知blockManagerMaster,blockManagerMaster通过blockManagerInfo内的blockStatus进行元数据的操作。
首先看位于org.apache.spark.storage中的blockManagerMaster,重要的功能在BlockManagerMasterActor类中定义,下面分析blockManagerMasterInfo类:
首先,持有一个blockManagerInfo的hashmap,记录了BlockManagerId与BlockManagerInfo的映射,BlockManagerInfo记录blockManager的一些元数据信息:
private val blockManagerInfo = new mutable.HashMap[BlockManagerId, BlockManagerInfo]
private val blockManagerIdByExecutor = new mutable.HashMap[String, BlockManagerId]
下面来看blockManager的注册:
private def register(id: BlockManagerId, maxMemSize: Long, slaveActor: ActorRef) {
val time = System.currentTimeMillis()
//如果没有注册过,则去注册blockManager
if (!blockManagerInfo.contains(id)) {
// BlockManagerId包含有成员变量executorID,通过BlockManagerId找到executorID
// 然后判断该executorID是否存在,如果存在,那么将存在的该executorid对应的BlockManagerId移除
// 因为此处是在!blockManagerInfo.contains(id)这个条件下,所以必须没有该executorid对应的BlockManagerId
blockManagerIdByExecutor.get(id.executorId) match {
case Some(oldId) =>
// A block manager of the same executor already exists, so remove it (assumed dead)
logError("Got two different block manager registrations on same executor - "
+ s" will replace old one $oldId with new one $id")
removeExecutor(id.executorId)
case None =>
}
logInfo("Registering block manager %s with %s RAM, %s".format(
id.hostPort, Utils.bytesToString(maxMemSize), id))
//将新的executorID与BlockManagerId映射起来,key为executorId,value为BlockManagerId
blockManagerIdByExecutor(id.executorId) = id
//生成blockManagerInfo与BlockManagerId的映射
blockManagerInfo(id) = new BlockManagerInfo(
id, System.currentTimeMillis(), maxMemSize, slaveActor)
}
listenerBus.post(SparkListenerBlockManagerAdded(time, id, maxMemSize))
}
private def updateBlockInfo(
blockManagerId: BlockManagerId,
blockId: BlockId,
storageLevel: StorageLevel,
memSize: Long,
diskSize: Long,
tachyonSize: Long): Boolean = {
if (!blockManagerInfo.contains(blockManagerId)) {
if (blockManagerId.isDriver && !isLocal) {
// We intentionally do not register the master (except in local mode),
// so we should not indicate failure.
return true
} else {
return false
}
}
if (blockId == null) {
blockManagerInfo(blockManagerId).updateLastSeenMs()
return true
}
blockManagerInfo(blockManagerId).updateBlockInfo(
blockId, storageLevel, memSize, diskSize, tachyonSize)
var locations: mutable.HashSet[BlockManagerId] = null
if (blockLocations.containsKey(blockId)) {
locations = blockLocations.get(blockId)
} else {
locations = new mutable.HashSet[BlockManagerId]
blockLocations.put(blockId, locations)
}
if (storageLevel.isValid) {
locations.add(blockManagerId)
} else {
locations.remove(blockManagerId)
}
// Remove the block from master tracking if it has been removed on all slaves.
if (locations.size == 0) {
blockLocations.remove(blockId)
}
true
}
下面看blockManager类,首先,来看blockManager的类定义:
private[spark] class BlockManager(
executorId: String,
actorSystem: ActorSystem,
val master: BlockManagerMaster,
defaultSerializer: Serializer,
maxMemory: Long,
val conf: SparkConf,
mapOutputTracker: MapOutputTracker,
shuffleManager: ShuffleManager,
blockTransferService: BlockTransferService,
securityManager: SecurityManager,
numUsableCores: Int)
extends BlockDataManager with Logging
blockManager中管理的几种存储级别:内存,磁盘,tachyon,每种存储级别会有对应的类进行数据的操作,分别是memoryStore,diskStore,tachyonStore。
private[spark] val memoryStore = new MemoryStore(this, maxMemory)
private[spark] val diskStore = new DiskStore(this, diskBlockManager)
private[spark] lazy val tachyonStore: TachyonStore = {
val storeDir = conf.get("spark.tachyonStore.baseDir", "/tmp_spark_tachyon")
val appFolderName = conf.get("spark.tachyonStore.folderName")
val tachyonStorePath = s"$storeDir/$appFolderName/${this.executorId}"
val tachyonMaster = conf.get("spark.tachyonStore.url", "tachyon://localhost:19998")
val tachyonBlockManager =
new TachyonBlockManager(this, tachyonStorePath, tachyonMaster)
tachyonInitialized = true
new TachyonStore(this, tachyonBlockManager)
}
在blockManager初始化的时候回调用initialize方法:
def initialize(appId: String): Unit = {
blockTransferService.init(this)
shuffleClient.init(appId)
//一个blockManager对应一个executorId,blockTransferService的host,port
blockManagerId = BlockManagerId(
executorId, blockTransferService.hostName, blockTransferService.port)
shuffleServerId = if (externalShuffleServiceEnabled) {
BlockManagerId(executorId, blockTransferService.hostName, externalShuffleServicePort)
} else {
blockManagerId
}
//像BlockManagerMaster注册blockManager
master.registerBlockManager(blockManagerId, maxMemory, slaveActor)
// Register Executors' configuration with the local shuffle service, if one should exist.
if (externalShuffleServiceEnabled && !blockManagerId.isDriver) {
registerWithExternalShuffleServer()
}
}
首先来看读取内存存储数据的情况:
private def doGetLocal(blockId: BlockId, asBlockResult: Boolean): Option[Any] = {
//orNull:option方法,如果它不为空返回该选项的值,如果它是空则返回null。
//blockInfo:TimeStampedHashMap[BlockId, BlockInfo]
val info = blockInfo.get(blockId).orNull
if (info != null) {
info.synchronized {
// Double check to make sure the block is still there. There is a small chance that the
// block has been removed by removeBlock (which also synchronizes on the blockInfo object).
// Note that this only checks metadata tracking. If user intentionally deleted the block
// on disk or from off heap storage without using removeBlock, this conditional check will
// still pass but eventually we will get an exception because we can't find the block.
//判断blockInfo是否为空,blockInfo记录了block的元数据信息
//如果通过调用程序来移除block,比如认为操作移除block的话,会发生此处的情况
if (blockInfo.get(blockId).isEmpty) {
logWarning(s"Block $blockId had been removed")
return None
}
// If another thread is writing the block, wait for it to become ready.
//如果其他线程正在操作该block ,那么等待
if (!info.waitForReady()) {
// If we get here, the block write failed.
logWarning(s"Block $blockId was marked as failure.")
return None
}
//获取存储级别,内存、tachyon、是否内存或者tachyon沾满后会刷到磁盘,是否需要多个副本
val level = info.level
logDebug(s"Level for block $blockId is $level")
// Look for the block in memory
//数据存储在内存的情况
//调用memoryStore的getValues与getBytes来读取数据
if (level.useMemory) {
logDebug(s"Getting block $blockId from memory")
val result = if (asBlockResult) {
//需要的是非序列化的数据
memoryStore.getValues(blockId).map(new BlockResult(_, DataReadMethod.Memory, info.size))
} else {
//需要的是序列化的数据
memoryStore.getBytes(blockId)
}
result match {
case Some(values) =>
return result
case None =>
logDebug(s"Block $blockId not found in memory")
}
}
override def getValues(blockId: BlockId): Option[Iterator[Any]] = {
val entry = entries.synchronized {
entries.get(blockId)
}
if (entry == null) {
None
} else if (entry.deserialized) {
//非序列化数据。直接返回
Some(entry.value.asInstanceOf[Array[Any]].iterator)
} else {
//序列化数据,反序列化后返回
val buffer = entry.value.asInstanceOf[ByteBuffer].duplicate() // Doesn't actually copy data
Some(blockManager.dataDeserialize(blockId, buffer))
}
}
getBytes获取的是序列化数据:
override def getBytes(blockId: BlockId): Option[ByteBuffer] = {
val entry = entries.synchronized {
//从内存中获取数据
entries.get(blockId)
}
if (entry == null) {
None
} else if (entry.deserialized) {// 如果获取的数据是非序列化的数据,那么序列化数据后返回,否则直接返回
Some(blockManager.dataSerialize(blockId, entry.value.asInstanceOf[Array[Any]].iterator))
} else {
Some(entry.value.asInstanceOf[ByteBuffer].duplicate()) // Doesn't actually copy the data
}
}
if (level.useDisk) {
logDebug(s"Getting block $blockId from disk")
val bytes: ByteBuffer = diskStore.getBytes(blockId) match {
case Some(b) => b
case None =>
throw new BlockException(
blockId, s"Block $blockId not found on disk, though it should be")
}
assert(0 == bytes.position())
//如果只使用磁盘没有使用内存
if (!level.useMemory) {
// If the block shouldn't be stored in memory, we can just return it
if (asBlockResult) {
return Some(new BlockResult(dataDeserialize(blockId, bytes), DataReadMethod.Disk,
info.size))
} else {
return Some(bytes)
}
//如果使用磁盘和内存混合存储
} else {
// Otherwise, we also have to store something in the memory store
if (!level.deserialized || !asBlockResult) {
/* We'll store the bytes in memory if the block's storage level includes
* "memory serialized", or if it should be cached as objects in memory
* but we only requested its serialized bytes. */
val copyForMemory = ByteBuffer.allocate(bytes.limit)
copyForMemory.put(bytes)
memoryStore.putBytes(blockId, copyForMemory, level)
bytes.rewind()
}
if (!asBlockResult) {
return Some(bytes)
} else {
val values = dataDeserialize(blockId, bytes)
if (level.deserialized) {
// Cache the values before returning them
val putResult = memoryStore.putIterator(
blockId, values, level, returnValues = true, allowPersistToDisk = false)
// The put may or may not have succeeded, depending on whether there was enough
// space to unroll the block. Either way, the put here should return an iterator.
putResult.data match {
case Left(it) =>
return Some(new BlockResult(it, DataReadMethod.Disk, info.size))
case _ =>
// This only happens if we dropped the values back to disk (which is never)
throw new SparkException("Memory store did not return an iterator!")
}
} else {
return Some(new BlockResult(values, DataReadMethod.Disk, info.size))
}
}
}
}
}
} else {
logDebug(s"Block $blockId not registered locally")
}
None
}
private def doGetRemote(blockId: BlockId, asBlockResult: Boolean): Option[Any] = {
//判断,如果条件不满足,则抛出异常
require(blockId != null, "BlockId is null")
//打乱block所在位置,以便均衡
val locations = Random.shuffle(master.getLocations(blockId))
//循环读取所有位置的数据
for (loc <- locations) {
logDebug(s"Getting remote block $blockId from $loc")
//远程读取数据
val data = blockTransferService.fetchBlockSync(
loc.host, loc.port, loc.executorId, blockId.toString).nioByteBuffer()
if (data != null) {
if (asBlockResult) {
//返回的是序列化的数据,如果不需要序列化,则进行反序列化
return Some(new BlockResult(
dataDeserialize(blockId, data),
DataReadMethod.Network,
data.limit()))
} else {
return Some(data)
}
}
logDebug(s"The value of block $blockId is null")
}
logDebug(s"Block $blockId not found")
None
}
以上分析的书读数据的两种情况:读取本地数据和读取远程数据。下面分析写数据,写数据由doPut方法来管理:
private def doPut(
blockId: BlockId,
data: BlockValues,
level: StorageLevel,
tellMaster: Boolean = true,
effectiveStorageLevel: Option[StorageLevel] = None)
: Seq[(BlockId, BlockStatus)] = {
require(blockId != null, "BlockId is null")
require(level != null && level.isValid, "StorageLevel is null or invalid")
effectiveStorageLevel.foreach { level =>
require(level != null && level.isValid, "Effective StorageLevel is null or invalid")
}
// Return value
//blockStatus中封装了block的一些信息:
/*
* storageLevel: StorageLevel,
memSize: Long,
diskSize: Long,
tachyonSize: Long
*/
val updatedBlocks = new ArrayBuffer[(BlockId, BlockStatus)]
/* Remember the block's storage level so that we can correctly drop it to disk if it needs
* to be dropped right after it got put into memory. Note, however, that other threads will
* not be able to get() this block until we call markReady on its BlockInfo. */
//为将写入的block生成blockInfo并写入map中
val putBlockInfo = {
val tinfo = new BlockInfo(level, tellMaster)
// Do atomically !
//如果不存在该info信息,那么将blockId与 BlockInfo关联起来,放入map
val oldBlockOpt = blockInfo.putIfAbsent(blockId, tinfo)
if (oldBlockOpt.isDefined) {
if (oldBlockOpt.get.waitForReady()) {
logWarning(s"Block $blockId already exists on this machine; not re-adding it")
return updatedBlocks
}
// TODO: So the block info exists - but previous attempt to load it (?) failed.
// What do we do now ? Retry on it ?
oldBlockOpt.get
} else {
tinfo
}
}
val startTimeMs = System.currentTimeMillis
/* If we're storing values and we need to replicate the data, we'll want access to the values,
* but because our put will read the whole iterator, there will be no values left. For the
* case where the put serializes data, we'll remember the bytes, above; but for the case where
* it doesn't, such as deserialized storage, let's rely on the put returning an Iterator. */
var valuesAfterPut: Iterator[Any] = null
// Ditto for the bytes after the put
var bytesAfterPut: ByteBuffer = null
// Size of the block in bytes
var size = 0L
// The level we actually use to put the block
val putLevel = effectiveStorageLevel.getOrElse(level)
// If we're storing bytes, then initiate the replication before storing them locally.
// This is faster as data is already serialized and ready to send.
val replicationFuture = data match {
case b: ByteBufferValues if putLevel.replication > 1 =>
// Duplicate doesn't copy the bytes, but just creates a wrapper
val bufferView = b.buffer.duplicate()
Future { replicate(blockId, bufferView, putLevel) }
case _ => null
}
//对blockInfo 加锁,多线程同步
putBlockInfo.synchronized {
logTrace("Put for block %s took %s to get into synchronized block"
.format(blockId, Utils.getUsedTimeMs(startTimeMs)))
var marked = false
try {
// returnValues - Whether to return the values put
// blockStore - The type of storage to put these values into
// blockStore - 存储方式:内存磁盘还是tachyon
val (returnValues, blockStore: BlockStore) = {
//使用内存
if (putLevel.useMemory) {
// Put it in memory first, even if it also has useDisk set to true;
// We will drop it to disk later if the memory store can't hold it.
(true, memoryStore)
//使用tachyon
} else if (putLevel.useOffHeap) {
// Use tachyon for off-heap storage
(false, tachyonStore)
//使用磁盘
} else if (putLevel.useDisk) {
// Don't get back the bytes from put unless we replicate them
(putLevel.replication > 1, diskStore)
} else {
//否则,抛出没有指定正确的存储级别错误
assert(putLevel == StorageLevel.NONE)
throw new BlockException(
blockId, s"Attempted to put block $blockId without specifying storage level!")
}
}
// Actually put the values
// 根据选择的store和数据类型,放入store中,putIterator方法写入数据并返回写入数据量等信息
val result = data match {
case IteratorValues(iterator) =>
blockStore.putIterator(blockId, iterator, putLevel, returnValues)
case ArrayValues(array) =>
blockStore.putArray(blockId, array, putLevel, returnValues)
case ByteBufferValues(bytes) =>
bytes.rewind()
blockStore.putBytes(blockId, bytes, putLevel)
}
size = result.size
result.data match {
case Left (newIterator) if putLevel.useMemory => valuesAfterPut = newIterator
case Right (newBytes) => bytesAfterPut = newBytes
case _ =>
}
// Keep track of which blocks are dropped from memory
if (putLevel.useMemory) {
result.droppedBlocks.foreach { updatedBlocks += _ }
}
//获取block对应的status
val putBlockStatus = getCurrentBlockStatus(blockId, putBlockInfo)
if (putBlockStatus.storageLevel != StorageLevel.NONE) {
// Now that the block is in either the memory, tachyon, or disk store,
// let other threads read it, and tell the master about it.
marked = true
putBlockInfo.markReady(size)
if (tellMaster) {
//向master通知blockstatus,更新元数据信息
reportBlockStatus(blockId, putBlockInfo, putBlockStatus)
}
updatedBlocks += ((blockId, putBlockStatus))
}
} finally {
// If we failed in putting the block to memory/disk, notify other possible readers
// that it has failed, and then remove it from the block info map.
if (!marked) {
// Note that the remove must happen before markFailure otherwise another thread
// could've inserted a new BlockInfo before we remove it.
blockInfo.remove(blockId)
putBlockInfo.markFailure()
logWarning(s"Putting block $blockId failed")
}
}
}
logDebug("Put block %s locally took %s".format(blockId, Utils.getUsedTimeMs(startTimeMs)))
// Either we're storing bytes and we asynchronously started replication, or we're storing
// values and need to serialize and replicate them now:
if (putLevel.replication > 1) {//数据副本数据大于1,那么复制多份数据
data match {
case ByteBufferValues(bytes) =>
if (replicationFuture != null) {
Await.ready(replicationFuture, Duration.Inf)
}
case _ =>
val remoteStartTime = System.currentTimeMillis
// Serialize the block if not already done
if (bytesAfterPut == null) {
if (valuesAfterPut == null) {
throw new SparkException(
"Underlying put returned neither an Iterator nor bytes! This shouldn't happen.")
}
bytesAfterPut = dataSerialize(blockId, valuesAfterPut)
}
replicate(blockId, bytesAfterPut, putLevel)//调用该方法复制数据
logDebug("Put block %s remotely took %s"
.format(blockId, Utils.getUsedTimeMs(remoteStartTime)))
}
}
BlockManager.dispose(bytesAfterPut)
if (putLevel.replication > 1) {
logDebug("Putting block %s with replication took %s"
.format(blockId, Utils.getUsedTimeMs(startTimeMs)))
} else {
logDebug("Putting block %s without replication took %s"
.format(blockId, Utils.getUsedTimeMs(startTimeMs)))
}
updatedBlocks
}
val result = data match {
case IteratorValues(iterator) =>
blockStore.putIterator(blockId, iterator, putLevel, returnValues)
case ArrayValues(array) =>
blockStore.putArray(blockId, array, putLevel, returnValues)
case ByteBufferValues(bytes) =>
bytes.rewind()
blockStore.putBytes(blockId, bytes, putLevel)
}
这段代码完成,blockStore根据存储级别分为三种: 如果是memoryStore,写入的时候调用了memoryStore的putIterator方法,最后直到调用tryToPut方法:
private def tryToPut(
blockId: BlockId,
value: Any,
size: Long,
deserialized: Boolean): ResultWithDroppedBlocks = {
/* TODO: Its possible to optimize the locking by locking entries only when selecting blocks
* to be dropped. Once the to-be-dropped blocks have been selected, and lock on entries has
* been released, it must be ensured that those to-be-dropped blocks are not double counted
* for freeing up more space for another block that needs to be put. Only then the actually
* dropping of blocks (and writing to disk if necessary) can proceed in parallel. */
var putSuccess = false
val droppedBlocks = new ArrayBuffer[(BlockId, BlockStatus)]
//并发同步,判断内存大小
accountingLock.synchronized {
//保证有可用的空间,该方法判断当前内存不足以存储当前数据,
//那么同步entries那么移除一部分可以写到磁盘的数据,那么移除数据到磁盘
//但是如果被移除的数据没有指定可以写到磁盘,那么此数据就丢了
//移除的过程中,由于entries是一个linkedHashMap,所以移除的顺序是有限移除旧的entry
val freeSpaceResult = ensureFreeSpace(blockId, size)
val enoughFreeSpace = freeSpaceResult.success
droppedBlocks ++= freeSpaceResult.droppedBlocks
//首先调用enoughFreeSpace方法判断内存是否够用
if (enoughFreeSpace) {
//实际放入的数据封装在MemoryEntry中
val entry = new MemoryEntry(value, size, deserialized)
entries.synchronized {
//将新的数据entry放入到entries中,并将blockID与该entry对应
entries.put(blockId, entry)
currentMemory += size
}
val valuesOrBytes = if (deserialized) "values" else "bytes"
logInfo("Block %s stored as %s in memory (estimated size %s, free %s)".format(
blockId, valuesOrBytes, Utils.bytesToString(size), Utils.bytesToString(freeMemory)))
putSuccess = true
} else {
//如果删除其他的数据还是不能放入数据,那么写入磁盘
// Tell the block manager that we couldn't put it in memory so that it can drop it to
// disk if the block allows disk storage.
val data = if (deserialized) {
Left(value.asInstanceOf[Array[Any]])
} else {
Right(value.asInstanceOf[ByteBuffer].duplicate())
}
val droppedBlockStatus = blockManager.dropFromMemory(blockId, data)
droppedBlockStatus.foreach { status => droppedBlocks += ((blockId, status)) }
}
}
ResultWithDroppedBlocks(putSuccess, droppedBlocks)
}
如果是diskStore,则直接使用javaIO流写入磁盘。
数据的多副本操作定义如下:
while (!done) {
getRandomPeer() match {
case Some(peer) =>
try {
val onePeerStartTime = System.currentTimeMillis
data.rewind()
logTrace(s"Trying to replicate $blockId of ${data.limit()} bytes to $peer")
//将数据异步写入其他的blockmanager上
blockTransferService.uploadBlockSync(
peer.host, peer.port, peer.executorId, blockId, new NioManagedBuffer(data), tLevel)
logTrace(s"Replicated $blockId of ${data.limit()} bytes to $peer in %s ms"
.format(System.currentTimeMillis - onePeerStartTime))
peersReplicatedTo += peer
peersForReplication -= peer
replicationFailed = false
if (peersReplicatedTo.size == numPeersToReplicateTo) {
done = true // specified number of peers have been replicated to
}
} catch {
case e: Exception =>
logWarning(s"Failed to replicate $blockId to $peer, failure #$failures", e)
failures += 1
replicationFailed = true
peersFailedToReplicateTo += peer
if (failures > maxReplicationFailures) { // too many failures in replcating to peers
done = true
}
}
case None => // no peer left to replicate to
done = true
}
}