1、IN 和 EXISTS 区别
以pubs数据库为例:
-- 根据作者id查询出版图书名
i、使用嵌套循环IN来查询,IN()只执行一次,它查出titleauthor表中的所有title_id字段并缓存起来.之后,检查titles表的title_id是否与titleauthor表中的title_id相等,如果相等则将titles表的记录加入结果集中,直到遍历完titles表的所有记录.
SELECT t.title FROM titles t WHERE t.title_id IN (
SELECT ti.title_id FROM titleauthor ti WHERE ti.au_id='213-46-8915');
ii、使用EXISTS替换IN查询,EXISTS()会执行titles.length次,它并不缓存EXISTS()结果集,因为EXISTS()结果集的内容并不重要,重要的是结果集中是否有记录,如果有则返回true,没有则返回false.
SELECT t.title FROM titles t WHERE EXISTS (
SELECT 1 FROM titleauthor ti WHERE ti.title_id=t.title_id AND ti.au_id='213-46-8915');
总结:当titleauthor表数据比titles表数据多时适合使用exists(),因为它没有那么遍历操作,只需要再执行一次查询就行.
2、NULL与索引
不能用null作索引,任何包含null值的列都将不会被包含在索引中。即使索引有多列这样的情况下,只要这些列中有一列含有null,该列就会从索引中排除。也就是说如果某列存在空值,即使对该列建索引也不会提高性能。
任何在where子句中使用is null或is not null的语句优化器是不允许使用索引的。
3、SELECT子句中应该避免使用 ‘ * ‘:
ORACLE数据库在解析的过程中, 会将’*’ 依次转换成所有的列名, 这个工作是通过查询数据字典完成的, 这意味着将耗费更多的时间。
4、应减少访问数据库的次数:
ORACLE在内部执行了许多工作: 解析SQL语句, 估算索引的利用率, 绑定变量 , 读数据块等;
使用存储过程或者自定义函数来进行数据库操作,可以减少数据库访问次数,同时还可以有效防止SQL注入。
5、尽量多使用COMMIT:
只要有可能,在程序中尽量多使用COMMIT, 这样程序的性能得到提高,需求也会因为COMMIT所释放的资源而减少:。
6、用Where子句替换HAVING子句:
避免使用HAVING子句, HAVING 只会在检索出所有记录之后才对结果集进行过滤. 这个处理需要排序,总计等操作. 如果能通过WHERE子句限制记录的数目,那就能减少这方面的开销. (非oracle中)on、where、having这三个都可以加条件的子句中,on是最先执行,where次之,having最后,因为on是先把不 符合条件的记录过滤后才进行统计,它就可以减少中间运算要处理的数据,按理说应该速度是最快的,where也应该比having快点的,因为它过滤数据后 才进行sum,在两个表联接时才用on的,所以在一个表的时候,就剩下where跟having比较了。在这单表查询统计的情况下,如果要过滤的条件没有涉及到要计算字段,那它们的结果是一样的,只是where可以使用rushmore技术,而having就不能,在速度上后者要慢如果要涉及到计算的字 段,就表示在没计算之前,这个字段的值是不确定的,根据上篇写的工作流程,where的作用时间是在计算之前就完成的,而having就是在计算后才起作 用的,所以在这种情况下,两者的结果会不同。在多表联接查询时,on比where更早起作用。系统首先根据各个表之间的联接条件,把多个表合成一个临时表 后,再由where进行过滤,然后再计算,计算完后再由having进行过滤。由此可见,要想过滤条件起到正确的作用,首先要明白这个条件应该在什么时候起作用,然后再决定放在哪里。
7、使用表的别名(Alias):
当在SQL语句中连接多个表时, 请使用表的别名并把别名前缀于每个Column上.这样一来,就可以减少解析的时间并减少那些由Column歧义引起的语法错误.
8、用索引提高效率:
索引有唯一索引、聚集索引、非聚集索引。索引是表的一个概念部分,用来提高检索数据的效率,ORACLE使用了一个复杂的自平衡B-tree结构. 通常,通过索引查询数据比全表扫描要快. 当ORACLE找出执行查询和Update语句的最佳路径时, ORACLE优化器将使用索引. 同样在联结多个表时使用索引也可以提高效率. 另一个使用索引的好处是,它提供了主键(primary key)的唯一性验证.。那些LONG或LONG RAW数据类型, 你可以索引几乎所有的列. 通常, 在大型表中使用索引特别有效. 当然,你也会发现, 在扫描小表时,使用索引同样能提高效率. 虽然使用索引能得到查询效率的提高,但是我们也必须注意到它的代价. 索引需要空间来存储,也需要定期维护, 每当有记录在表中增减或索引列被修改时, 索引本身也会被修改. 这意味着每条记录的INSERT , DELETE , UPDATE将为此多付出4 , 5 次的磁盘I/O . 因为索引需要额外的存储空间和处理,那些不必要的索引反而会使查询反应时间变慢.。定期的重构索引是有必要的.
索引创建:
在经常需要搜索的列上,可以加快搜索的速度;
在作为主键的列上,强制该列的唯一性和组织表中数据的排列结构;
在经常用在连接的列上,这 些列主要是一些外键,可以加快连接的速度;
在经常需要根据范围进行搜索的列上创建索引,因为索引已经排序,其指定的范围是连续的;
在经常需要排序的列上创 建索引,因为索引已经排序,这样查询可以利用索引的排序,加快排序查询时间;
在经常使用在WHERE子句中的列上面创建索引,加快条件的判断速度。
索引的原理:索引是一个B+二叉树。从原理上说B+二叉树的特性 决定了对insert、update、delete、select的影响和作用。
索引优点:查询效率变快。
索引缺点:建立索引过多,会影响insert速度。
如果对数据库进行增删改操作,会导致B+二叉树进行再平衡重整,这个过程B+二叉树进行重新整理,索引越大,索引越多,重新整理的时间花费越大。所以有时候再进行大批量数据操作时,我们会不建立索引,等数据全部操作完毕,进行查询时再建立索引。
10、尽量不要使用临时表
尽量不要使用临时表,除非你必须这样做。一般使用子查询可以代替临时表。使用临时表会带来系统开销,如果你是用COM+进行编程,它还会给你带来很大的麻 烦,因为COM+使用数据库连接池而临时表却自始至终都存在。SQL Server提供了一些替代方案,比如Table数据类型。