经常看到有学习OpenCV不久的人提问,如何识别一些简单的几何形状与它们的颜色,其实通过OpenCV的轮廓发现与几何分析相关的函数,只需不到100行的代码就可以很好的实现这些简单几何形状识别与对象测量相关操作。本文就会演示给大家如何通过OpenCV 轮廓发现与几何分析相关函数实现如下功能:
几何形状识别(识别三角形、四边形/矩形、多边形、圆)
计算几何形状面积与周长、中心位置
提取几何形状的颜色
在具体代码实现与程序演示之前,我们先要搞清楚一些概念。
一:基本概念与函数介绍
什么是轮廓,简单说轮廓就是一些列点相连组成形状、它们拥有同样的颜色、轮廓发现在图像的对象分析、对象检测等方面是非常有用的工具,在OpenCV中使用轮廓发现相关函数时候要求输入图像是二值图像,这样便于轮廓提取、边缘提取等操作。轮廓发现的函数与参数解释如下:
findContours(image, mode, method, contours=None, hierarchy=None, offset=None)
approxPolyDP(curve, epsilon, closed, approxCurve=None)
moments(array, binaryImage=None)
加载图像,
图像二值化
轮廓发现
几何形状识别
测量周长、面积、计算中心
颜色提取
完整的源代码如下:
####################################################
####################################################
import cv2 as cv
import numpy as np
class ShapeAnalysis:
def init(self):
self.shapes = {‘triangle’: 0, ‘rectangle’: 0, ‘polygons’: 0, ‘circles’: 0}
def analysis(self, frame):
h, w, ch = frame.shape
result = np.zeros((h, w, ch), dtype=np.uint8)
# 二值化图像
print("start to detect lines...\n")
gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY_INV | cv.THRESH_OTSU)
cv.imshow("input image", frame)
out_binary, contours, hierarchy = cv.findContours(binary, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
for cnt in range(len(contours)):
# 提取与绘制轮廓
cv.drawContours(result, contours, cnt, (0, 255, 0), 2)
# 轮廓逼近
epsilon = 0.01 * cv.arcLength(contours[cnt], True)
approx = cv.approxPolyDP(contours[cnt], epsilon, True)
# 分析几何形状
corners = len(approx)
shape_type = ""
if corners == 3:
count = self.shapes['triangle']
count = count+1
self.shapes['triangle'] = count
shape_type = "三角形"
if corners == 4:
count = self.shapes['rectangle']
count = count + 1
self.shapes['rectangle'] = count
shape_type = "矩形"
if corners >= 10:
count = self.shapes['circles']
count = count + 1
self.shapes['circles'] = count
shape_type = "圆形"
if 4 < corners < 10:
count = self.shapes['polygons']
count = count + 1
self.shapes['polygons'] = count
shape_type = "多边形"
# 求解中心位置
mm = cv.moments(contours[cnt])
cx = int(mm['m10'] / mm['m00'])
cy = int(mm['m01'] / mm['m00'])
cv.circle(result, (cx, cy), 3, (0, 0, 255), -1)
# 颜色分析
color = frame[cy][cx]
color_str = "(" + str(color[0]) + ", " + str(color[1]) + ", " + str(color[2]) + ")"
# 计算面积与周长
p = cv.arcLength(contours[cnt], True)
area = cv.contourArea(contours[cnt])
print("周长: %.3f, 面积: %.3f 颜色: %s 形状: %s "% (p, area, color_str, shape_type))
cv.imshow("Analysis Result", self.draw_text_info(result))
cv.imwrite("D:/test-result.png", self.draw_text_info(result))
return self.shapes
def draw_text_info(self, image):
c1 = self.shapes['triangle']
c2 = self.shapes['rectangle']
c3 = self.shapes['polygons']
c4 = self.shapes['circles']
cv.putText(image, "triangle: "+str(c1), (10, 20), cv.FONT_HERSHEY_PLAIN, 1.2, (255, 0, 0), 1)
cv.putText(image, "rectangle: " + str(c2), (10, 40), cv.FONT_HERSHEY_PLAIN, 1.2, (255, 0, 0), 1)
cv.putText(image, "polygons: " + str(c3), (10, 60), cv.FONT_HERSHEY_PLAIN, 1.2, (255, 0, 0), 1)
cv.putText(image, "circles: " + str(c4), (10, 80), cv.FONT_HERSHEY_PLAIN, 1.2, (255, 0, 0), 1)
return image
if name == “main”:
src = cv.imread(“D:/javaopencv/gem_test.png”)
ld = ShapeAnalysis()
ld.analysis(src)
cv.waitKey(0)
cv.destroyAllWindows()
原图
OpenCV中几何形状识别与测量
运行结果:
OpenCV中几何形状识别与测量
控制台输出:
OpenCV中几何形状识别与测量
https://blog.51cto.com/gloomyfish/2104134