Jdk8--新特性--串并行流与ForkJoin框架

并行流就是把一个内容分成多个数据块,并用不同的线程分别处理每个数据块的流。穿行流则相反,并行流的底层其实就是ForkJoin框架的一个实现。

那么先了解一下ForkJoin框架吧。

Fork/Join框架:在必要的情况下,将一个大任务,进行拆分(fork) 成若干个子任务(拆到不能再拆,这里就是指我们制定的拆分的临界值),再将一个个小任务的结果进行join汇总。

 

Fork/Join与传统线程池的区别!

Fork/Join采用“工作窃取模式”,当执行新的任务时他可以将其拆分成更小的任务执行,并将小任务加到线程队列中,然后再从一个随即线程中偷一个并把它加入自己的队列中。

就比如两个CPU上有不同的任务,这时候A已经执行完,B还有任务等待执行,这时候A就会将B队尾的任务偷过来,加入自己的队列中,对于传统的线程,ForkJoin更有效的利用的CPU资源!

我们来看一下ForkJoin的实现:实现这个框架需要继承RecursiveTask 或者 RecursiveAction ,RecursiveTask是有返回值的,相反Action则没有

测试

import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.ForkJoinTask;
import java.util.stream.LongStream;

import org.junit.Test;

public class TestForkJoin {
	
	@Test
	public void test1(){
		long start = System.currentTimeMillis();
		
		ForkJoinPool pool = new ForkJoinPool();
		ForkJoinTask task = new ForkJoinCalculate(0L, 10000000000L);
		
		long sum = pool.invoke(task);
		System.out.println(sum);
		
		long end = System.currentTimeMillis();
		
		System.out.println("耗费的时间为: " + (end - start)); //112-1953-1988-2654-2647-20663-113808
	}
	
	@Test
	public void test2(){
		long start = System.currentTimeMillis();
		
		long sum = 0L;
		
		for (long i = 0L; i <= 10000000000L; i++) {
			sum += i;
		}
		
		System.out.println(sum);
		
		long end = System.currentTimeMillis();
		
		System.out.println("耗费的时间为: " + (end - start)); //34-3174-3132-4227-4223-31583
	}
	
	@Test
	public void test3(){
		long start = System.currentTimeMillis();
		
		Long sum = LongStream.rangeClosed(0L, 10000000000L)
							 .parallel()
							 .sum();
		
		System.out.println(sum);
		
		long end = System.currentTimeMillis();
		
		System.out.println("耗费的时间为: " + (end - start)); //2061-2053-2086-18926
	}

}
import java.util.concurrent.RecursiveTask;

public class ForkJoinCalculate extends RecursiveTask{

	/**
	 * 
	 */
	private static final long serialVersionUID = 13475679780L;
	
	private long start;
	private long end;
	
	private static final long THRESHOLD = 10000L; //临界值
	
	public ForkJoinCalculate(long start, long end) {
		this.start = start;
		this.end = end;
	}
	
	@Override
	protected Long compute() {
		long length = end - start;
		
		if(length <= THRESHOLD){
			long sum = 0;
			
			for (long i = start; i <= end; i++) {
				sum += i;
			}
			
			return sum;
		}else{
			long middle = (start + end) / 2;
			
			ForkJoinCalculate left = new ForkJoinCalculate(start, middle);
			left.fork(); //拆分,并将该子任务压入线程队列
			
			ForkJoinCalculate right = new ForkJoinCalculate(middle+1, end);
			right.fork();
			
			return left.join() + right.join();
		}
		
	}

}

我们观察上面可以看出来执行10000000000L的相加操作各自执行完毕的时间不同。观察到当数据很大的时候ForkJoin比普通线程实现有效的多,但是相比之下ForkJoin的实现实在是有点麻烦,这时候Java 8 就为我们提供了一个并行流来实现ForkJoin实现的功能。可以看到并行流比自己实现ForkJoin还要快

Java 8 中将并行流进行了优化,我们可以很容易的对数据进行并行流的操作,Stream API可以声明性的通过parallel()与sequential()在并行流与穿行流中随意切换!

你可能感兴趣的:(JDK8)