环境:
Win10+VS2015+opencv3.4.x
opencv生成随机数据点,使用基于高斯混合模型(GMM)的EM算法进行数据点分类
源码:
void GMM_EM( ) {
Mat img(600, 600, CV_8UC3);//图像
RNG rng(12345);//随机数生成器,初始化可以传入一个64位的整型参数作为随机数产生器的初值
//颜色索引表,根据分类数量设定数组大小
Scalar colorTab[5] = {
Scalar(255,0,255),
Scalar(0,0,255),
Scalar(0,255,0),
Scalar(255,0,0),
Scalar(255,255,0),
};
int numCluster = rng.uniform(2, 5); //随机聚类数,2至5类
int sampleCount = rng.uniform(50, 1000); //随机样本数量50-1000个
Mat points(sampleCount, 2, CV_32FC1); //样本矩阵,sampleCount行,2列,通道1
//生成随机点
for (int k = 0; k < numCluster; k++)
{
Point center;
center.x = rng.uniform(0, img.cols);
center.y = rng.uniform(0, img.rows);
Mat pointChunk = points.rowRange(k*sampleCount / numCluster, (k == numCluster - 1 ? sampleCount : (k + 1)*sampleCount / numCluster)); //为指定的行跨度创建一个矩阵头
rng.fill(pointChunk, RNG::NORMAL, Scalar(center.x, center.y), Scalar(img.cols*0.05, img.rows*0.05)); //随机数填充矩阵
}
//将原数组(矩阵)打乱
randShuffle(points, 1, &rng);
Mat lables; //标签矩阵
Ptr em_model = EM::create();
em_model->setClustersNumber(numCluster);
em_model->setCovarianceMatrixType(EM::COV_MAT_SPHERICAL); // 协方差矩阵
em_model->setTermCriteria(TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 100, 0.1));//停止条件
em_model->trainEM(points, noArray(), lables, noArray());
//分类像素显示
Mat sample(1, 2, CV_32FC1);
for (int i=0;i(0) = (float)i;
sample.at(1) = (float)j;
int res = cvRound(em_model->predict2(sample, noArray())[1]);
Scalar color = colorTab[res];
circle(img, Point(i, j), 1, color*0.75, -1);
}
}
//原样本点显示
for (int i = 0; i < sampleCount; i++) {
circle(img, Point((int)points.at(i,0) , (int) points.at(i,1)), 1, Scalar(255,255,255), -1);
}
namedWindow("GMM-EM demo", CV_WINDOW_AUTOSIZE);
imshow("GMM-EM demo", img);
waitKey(0);
}
分类结果:
对比另一篇博文基于K-Means进行数据点分类:https://blog.csdn.net/ganwenbo2011/article/details/90574376