原文链接:https://www.bbsmax.com/A/xl56xk2ozr/
RSA_SHA256数字签名
------------------ rsa 加密与解密 -----------------------------
数论知识的实际应用: rsa加密
把问题归结为对数字的加密。 被加密的数字为明文。 RSA加密通过公钥对明文进行加密, 得到密文。 网络中传输的都是密文。接收方收到密文, 必须有私钥才能把密文解开。即RSA解密算法通过私钥对密文进行解密。
公钥都是公开的。 私钥只有指定接收方才有。
私钥是根据公钥取的一个数,要想猜出这个数的难度非常大。
看如何生成公钥:
取两个互质的大素数,分别记为p, q. 设t=(p-1)*(q-1). 取一个与t互质的一个素数记为e。
那么公钥就是(e, p*q).
现在通过公钥取一个数, 记为d,
--------------------- 用处 -------------
rsa加密有两种使用方式,
第一是对文件内容加密,这种用途需要发送方用公钥对文件加密, 接收方用私钥对文件解密。
这种方式下,文件在网络传输中都是密文, 那么在发送方要用rsa公钥加密. 接收方用私钥解密. 所以只有私钥的接收方才能解密,看到原文. 这是rsa单纯用于文件加密的用途.
第二是对文件的sha256签名进行加密, 这种方式下,发送方要用私钥对签名进行加密,接收方用公钥进行解密。
这种方式下, 原文件不加密, rsa与sha265签名算法, 生成的密文放在文件的开头。 可完成对文件的验证. 即该文件在传输过程中有没有被修改过. 如果被修改过, 即验证失败. 而crc校验, 只能验证文件的完整性. 如果被修改, 则验证不出来.
rsa还可做ssh身份验证. git仓库的验证用户的合法性 就是用rsa身份验证. id_pub是rsa加密后的.
------------------ Rsa_sha256数字签名验证 ------------------------------
利用编译时间,把要点总结一下,也梳理一下思路。
总的思路: 发送方用sha256算法对原文件生成一个签名文件,即32个字节的hash码。 然后用rsa加密算法对此算法加密。
接收方对加密的签名解密,得到一个32个字节的hash码。 对原文件进行sha256签名计算,得到32字节的hash. 将这两个hash码比较,是否相等。 若相等, 即Rsa_sha256数字签名验证通过。
原理: 不同文件生成的hash值一定不同。
另一种生成私钥的方式是用x509方式,即生成一个包含公钥和其他信息的证书, 和一个公钥。但是生成x509证书与私钥,必须设置密码。 用这个私钥生成数字签名时,就输入密码。
从私钥中提取公钥
用openssl标准命令,
opesnssl rsa -in private.pem -pubout -out public.pem
生成签名文件
用openssl标准命令,
openssl dgst -sha256 -sign private.pem -out cw.signature cw.origin
公钥字串解析
用openssl java库写解析程序
X509EncodedKeySpec pubkeySpec = new X509EncodedKeySpec(new BASE64Decoder().decodeBuffer(keyString));
KeyFactory keyFactory = KeyFactory.getInstance(“RSA”);
PublicKey key = keyFactory.generatePublic(pubkeySpec);
程序里的keyString字串, 来自于公钥pem文件,但要去掉文件中第一行和最后一行。
这个在网上找了好长时间。一开始的示例,没有base64decoder编码, 结果显示invalide format.
得到publickey, 即可输出到文件, 文件再由load_keys解析。
用程序方式rsa_sha256数字签名验证, 有两个可选方法:
一, 用google libmicrypt库,进行rsa_sha256数字签名验证
直接调用这个库的接口函数, 一直没过. 把这个函数从库里邻出来, 加上了log.
根据rsa解密后的签名与原文件sha256签名,两个所得到的32个字节的hash码相同,就验证通过. 改写了这个函数. 最后达到符合我们要求的函数.
从log中可以看出思路:
the hash calculated from origin file:
C3, 56, 28, 8, D4, 37, C6, B2, 77, 1A, E2, 21, D8, EA, 93, B1, 5C, E3, A6, 9C, B
B, 9A, B5, 3C, 76, 37, FD, DF, 3C, 15, A6, F,
the hash decrypted from signature:
C3, 56, 28, 8, D4, 37, C6, B2, 77, 1A, E2, 21, D8, EA, 93, B1, 5C, E3, A6, 9C, B
B, 9A, B5, 3C, 76, 37, FD, DF, 3C, 15, A6, F, cw.crc rsa_sha256 check pass.
二, 使用开源标准openssl库的做法:
加载静态库, 进程本身体积变大
安装openssl, 可以直接调用gcc a.c -lssl, 来引用静态库, 静态库会嵌入到进程中, 会使进程
变大. 动态库以单独文件的方式存在, 多个进程可以同时引用. 不增加使用进程的体积. 以下是直接由程序生成公钥和私钥, 再读取私钥做sha1数字签名验证。
复制代码
#include
#include
#include
#include
#include
#include
int main()
{
unsigned char hash[ SHA_DIGEST_LENGTH ];
#ifndef XINPUT_LEN
#define XINPUT_LEN (2*1024)
#endif
#ifndef XRSA_KEY_BITS
#define XRSA_KEY_BITS (1024)
#endif#define XRSA_KEY_BITS 2048
unsigned char *input = "ccccccccc " ; //[ XINPUT_LEN ];
unsigned char sign [ XRSA_KEY_BITS/8];
unsigned sign_len = sizeof( sign );
RSA* rsa_pri_key = RSA_generate_key( XRSA_KEY_BITS , 3 , NULL , NULL );
RSA* rsa_pub_key; // = RSAPublicKey_dup( rsa_pri_key );
FILE *fp = fopen("private.key", "wb");
PEM_write_RSAPrivateKey(fp, rsa_pri_key, NULL, NULL, XRSA_KEY_BITS, NULL, NULL);
fclose(fp);
fp = fopen("public.key", "wb");
PEM_write_RSAPublicKey(fp, rsa_pri_key);
fclose(fp);
fp = fopen("/home/ligang/rsa/public.key", "rb");
rsa_pub_key = PEM_read_RSAPublicKey(fp, NULL, NULL, NULL);
fclose(fp);
int r = RSA_sign( NID_sha256WithRSAEncryption, input , SHA_DIGEST_LENGTH , sign , &sign_len , rsa_pri_key );
assert( 0 != r && sizeof( sign ) == sign_len );
printf("%d \n", __LINE__);
if (RSA_verify( NID_sha256WithRSAEncryption , input, SHA_DIGEST_LENGTH , sign , sign_len , rsa_pub_key ) == 1 ) {
printf(" rsa verify ok \n");
}else{
printf(" rsa verify faile \n");
}
RSA_free( rsa_pub_key );
RSA_free( rsa_pri_key );
return 0;
}
复制代码
----------------------- java程序将public.pem解析成数组,被google的rsa_verify函数 -------------------
复制代码
/*
http://www.apache.org/licenses/LICENSE-2.0
import org.bouncycastle.jce.provider.BouncyCastleProvider;
import java.io.FileInputStream;
import java.math.BigInteger;
import java.security.cert.CertificateFactory;
import java.security.cert.; //X509Certificate;import java.security.cert.Certificate;
import java.security.KeyStore;
import java.security.Key;
import java.security.; //PublicKey;import java.security.Security;
import java.security.interfaces.ECPublicKey;
import java.security.interfaces.RSAPublicKey;
import java.security.spec.ECPoint;
import java.io.;
import java.nio.;
import java.security.KeyFactory;
import java.security.spec.KeySpec;
import java.security.spec.; //X509EncodedKeySpec;import sun.misc.;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
/**
Command line tool to extract RSA public keys from X.509 certificates
and output source code with data initializers for the keys.
@hide
/class DumpPublicKey {
/*
@param key to perform sanity checks on
@return version number of key. Supported versions are:
1: 2048-bit RSA key with e=3 and SHA-1 hash
2: 2048-bit RSA key with e=65537 and SHA-1 hash
3: 2048-bit RSA key with e=3 and SHA-256 hash
4: 2048-bit RSA key with e=65537 and SHA-256 hash
@throws Exception if the key has the wrong size or public exponent
*/static int checkRSA(RSAPublicKey key, boolean useSHA256) throws Exception {
BigInteger pubexp = key.getPublicExponent();
BigInteger modulus = key.getModulus();
int version;
if (pubexp.equals(BigInteger.valueOf(3))) {
version = useSHA256 ? 3 : 1;
} else if (pubexp.equals(BigInteger.valueOf(65537))) {
version = useSHA256 ? 4 : 2;
} else {
throw new Exception("Public exponent should be 3 or 65537 but is " +
pubexp.toString(10) + “.”);
}
if (modulus.bitLength() != 2048) {
throw new Exception(“Modulus should be 2048 bits long but is " +
modulus.bitLength() + " bits.”);
}
return version;
}
/**
@param key to perform sanity checks on
@return version number of key. Supported versions are:
5: 256-bit EC key with curve NIST P-256
@throws Exception if the key has the wrong size or public exponent
*/static int checkEC(ECPublicKey key) throws Exception {
if (key.getParams().getCurve().getField().getFieldSize() != 256) {
throw new Exception(“Curve must be NIST P-256”);
}
return 5;
}
/**
/**
BigInteger N = key.getModulus();
StringBuilder result = new StringBuilder();
int nwords = N.bitLength() / 32; // # of 32 bit integers in modulusif (version > 1) {
result.append("v");
result.append(Integer.toString(version));
result.append(" ");
}
result.append("{");
result.append(nwords);
BigInteger B = BigInteger.valueOf(0x100000000L); // 2^32
BigInteger N0inv = B.subtract(N.modInverse(B)); // -1 / N[0] mod 2^32
result.append(",0x");
result.append(N0inv.toString(16));
BigInteger R = BigInteger.valueOf(2).pow(N.bitLength());
BigInteger RR = R.multiply(R).mod(N); // 2^4096 mod N
// Write out modulus as little endian array of integers.
result.append(",{");
for (int i = 0; i < nwords; ++i) {
long n = N.mod(B).longValue();
result.append(n);
if (i != nwords - 1) {
result.append(",");
}
N = N.divide(B);
}
result.append("}");
// Write R^2 as little endian array of integers.
result.append(",{");
for (int i = 0; i < nwords; ++i) {
long rr = RR.mod(B).longValue();
result.append(rr);
if (i != nwords - 1) {
result.append(",");
}
RR = RR.divide(B);
}
result.append("}");
result.append("}");
return result.toString();
}
/**
StringBuilder result = new StringBuilder();
result.append("v");
result.append(Integer.toString(version));
result.append(" ");
BigInteger X = key.getW().getAffineX();
BigInteger Y = key.getW().getAffineY();
int nbytes = key.getParams().getCurve().getField().getFieldSize() / 8; // # of 32 bit integers in X coordinate
result.append("{");
result.append(nbytes);
BigInteger B = BigInteger.valueOf(0x100L); // 2^8
// Write out Y coordinate as array of characters.
result.append(",{");
for (int i = 0; i < nbytes; ++i) {
long n = X.mod(B).longValue();
result.append(n);
if (i != nbytes - 1) {
result.append(",");
}
X = X.divide(B);
}
result.append("}");
// Write out Y coordinate as array of characters.
result.append(",{");
for (int i = 0; i < nbytes; ++i) {
long n = Y.mod(B).longValue();
result.append(n);
if (i != nbytes - 1) {
result.append(",");
}
Y = Y.divide(B);
}
result.append("}");
result.append("}");
return result.toString();
}
static String print(PublicKey key, boolean useSHA256) throws Exception {
if (key instanceof RSAPublicKey) {
return printRSA((RSAPublicKey) key, useSHA256);
} else if (key instanceof ECPublicKey) {
return printEC((ECPublicKey) key);
} else {
throw new Exception("Unsupported key class: " + key.getClass().getName());
}
}
private static byte[] toBytes(String str) {
if(str == null) {
throw new IllegalArgumentException(“binary string is null”);
}
char[] chs = str.toCharArray();
byte[] bys = new byte[chs.length / 2];
int offset = 0;
int k = 0;
while(k < chs.length) {
bys[offset++] = (byte)((toInt(chs[k++]) << 4) | toInt(chs[k++]));
}
return bys;
}
private static int toInt(char a) {
if(a >= ‘0’ && a <= ‘9’) {
return a - ‘0’;
}
if(a >= ‘a’ && a <= ‘f’) {
return a - ‘a’ + 10;
}
if(a >= ‘A’ && a <= ‘F’) {
return a - ‘A’ + 10;
}
throw new IllegalArgumentException("parameter “” + a + "“is not hex number!”);
}
private static byte[] getData(String fileName) {
File f = new File(fileName);
InputStreamReader isr;
ArrayList strarr = new ArrayList ();
try {
isr = new InputStreamReader(new FileInputStream(f));
BufferedReader br = new BufferedReader(isr);
String line;
try {
while((line = br.readLine()) != null) {
strarr.add(line);
}
} catch (IOException e) {
// TODO Auto-generated catch block e.printStackTrace();
}
} catch (FileNotFoundException e) {
// TODO Auto-generated catch block e.printStackTrace();
}
StringBuilder sb = new StringBuilder();
for (int i = 1; i < strarr.size() - 1; i++) {
// Log.i(“xxx”, strarr.get(i)); sb.append(strarr.get(i));
}
return sb.toString().getBytes();
}
public static byte[] toByteArray(String filename) throws IOException{
File f = new File(filename);
if(!f.exists()){
throw new FileNotFoundException(filename);
}
ByteArrayOutputStream bos = new ByteArrayOutputStream((int)f.length());
BufferedInputStream in = null;
try{
in = new BufferedInputStream(new FileInputStream(f));
int buf_size = 1024;
byte[] buffer = new byte[buf_size];
int len = 0;
while(-1 != (len = in.read(buffer,0,buf_size))){
bos.write(buffer,0,len);
}
return bos.toByteArray();
}catch (IOException e) {
e.printStackTrace();
throw e;
}finally{
try{
in.close();
}catch (IOException e) {
e.printStackTrace();
}
bos.close();
}
}
public static void main(String[] args) {
if (args.length < 1) {
System.err.println("Usage: DumpPublicKey certfile ... > source.c");
System.exit(1);
}
try {
byte[] bytes = getData(args[0]);
String keyString = "";
for(int i= 0; i< bytes.length; i++){
keyString += (char)bytes[i];
}
X509EncodedKeySpec pubkeySpec = new X509EncodedKeySpec(new BASE64Decoder().decodeBuffer(keyString));
KeyFactory keyFactory = KeyFactory.getInstance("RSA");
PublicKey key = keyFactory.generatePublic(pubkeySpec);
check(key, true);
System.out.print(print(key, true));
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
System.exit(0);
}
}
复制代码
Android.mk 文件:
复制代码
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := dumpkey
LOCAL_SRC_FILES := DumpPublicKey.java
LOCAL_JAR_MANIFEST := DumpPublicKey.mf
LOCAL_STATIC_JAVA_LIBRARIES := bouncycastle-host
include $(BUILD_HOST_JAVA_LIBRARY)
复制代码
用./mk mm 编译,得到dumpkey.jar文件,chmod 777 dumpkey.jar. 然后dumpkey.jar public.pem即输出被google的rsa_verify函数使用
---------------- recovery.c 中添加rsa_sha256验证 ---------------------
复制代码
#ifdef HTC_COTA_SUPPORT
#include “mincrypt/rsa.h”
#include “mincrypt/sha.h”
#include “mincrypt/sha256.h”
typedef struct Certificate {
int hash_len; // SHA_DIGEST_SIZE (SHA-1) or SHA256_DIGEST_SIZE (SHA-256)
RSAPublicKey* public_key;
} Certificate;
#endif
#ifdef HTC_COTA_SUPPORT
FILE *log_f=NULL;
unsigned long cnCRC_32 = 0x04C11DB7;
unsigned long Table_CRC32[256];
static const uint8_t sha256_padding[RSANUMBYTES] = {
0x00, 0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0x00, 0x30, 0x31, 0x30,
0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65,
0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20,
// 32 bytes of hash go here.0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
};
char *find_str(const char *path, const char *match, int seek_pos)
{
FILE *fp = NULL;
unsigned int length = 0;
const char *p = NULL;
unsigned int count = 0;
char buf = 1;
char *result = NULL;
fp = fopen(path, "r");
if( fp == NULL ) {
fprintf(log_f, "%s, open %s error \n", __func__, path);
return NULL;
}
p = match;
while( *p != '\0'){
length++;
p++;
}
p = match;
fseek(fp, seek_pos, SEEK_SET);
while( (buf != '\0') && !feof(fp)){
fread(&buf, sizeof(char), 1, fp);
if( buf == *p ){
count++;
p++;
}else{
count = 0;
p = match;
}
if( count == length ){
break;
}
}
seek_pos = (int) ftell(fp);
count = 0;
do{
fread(&buf, sizeof(char), 1, fp);
++count;
fprintf(log_f, "%c, %0X \n", buf, buf);
}while( buf >= 0x21 && buf <= 0x7E && buf != '\0' && !feof(fp) );
result = (char *) malloc( sizeof(char) * count);
fseek(fp, seek_pos, SEEK_SET);
fread(result, sizeof(char), count, fp);
*(result + count -1) = '\0';
fprintf(log_f, "%s, result=%s, count=%d \n", __func__, result, count);
fclose(fp);
return result;
}
unsigned long int Reflect(unsigned long int ref, char ch)
{
unsigned long int value=0;
int i;
for (i=1; i<(ch+1); i++)
{
if (ref & 1)
value |= 1 << (ch - i);
ref >>= 1;
}
return value;
}
void creat_table(void)
{
unsigned long i32,j32;
unsigned long nData32;
unsigned long nAccum32;
for (i32=0; i32<256; i32++)
{
nData32 = (unsigned long)(i32 << 24);
nAccum32 = 0;
for (j32=0; j32<8; j32++)
{
if ((nData32 ^ nAccum32) & 0x80000000)
nAccum32 = (nAccum32 << 1) ^ cnCRC_32;
else
nAccum32 <<= 1;
nData32 <<= 1;
}
Table_CRC32[i32] = nAccum32;
}
}
unsigned long crc32(unsigned char *buf, unsigned long size)
{
unsigned long i;
unsigned char *point;
unsigned char chtemp;
unsigned long ii;
unsigned long CRC32_1;
CRC32_1 = 0x0;
point = buf;
ii = 0;
creat_table();
while (size--)
{
chtemp = *point++;
chtemp = (unsigned char)Reflect(chtemp, 8);
CRC32_1 = ((CRC32_1 << 8) | chtemp) ^Table_CRC32[(CRC32_1 >> 24) & 0xFF];
ii++;
if (ii==4)
CRC32_1 = CRC32_1 ^ 0xffffffff;
}
for (i=0; i<4; i++)
{
CRC32_1 = ((CRC32_1 << 8)) ^ Table_CRC32[(CRC32_1 >> 24) & 0xFF];
ii++;
if (ii==4)
CRC32_1 = CRC32_1 ^ 0xffffffff;
}
CRC32_1 = Reflect(CRC32_1, 32);
CRC32_1 = CRC32_1 ^ 0xffffffff;
return CRC32_1;
}
int get_crc( char *path)
{
FILE *fp;
unsigned char *buf;
unsigned long checksum = 0;
fpos_t fpos;
int readnum = 0;
int file_size;
int i;
int ret;
fp = fopen(path ,"r");
if( fp == NULL ) {
printf(" %s, open %s error \n" , __func__, path);
return -1;
}
ret = fseek(fp, 0, SEEK_END);
file_size = (int)ftell(fp);
//file_size = fpos;
buf = (unsigned char *)malloc(file_size);
ret = fseek(fp, 0, SEEK_SET);
readnum = fread(buf, 1, file_size, fp);
fclose(fp);
//for (i=0; i
}
void copy_file(const char *src, const char *dest)
{
FILE *src_fp;
FILE *dest_fp;
char buf = 1;
src_fp = fopen(src, "r");
if( src_fp == NULL) {
printf("%s, open %s error. \n", __func__, src);
return;
}
dest_fp = fopen(dest, "w");
if( dest_fp == NULL) {
printf("%s, open %s error. \n", __func__, dest);
return;
}
while (! feof(src_fp)) {
fread(&buf, sizeof(char), 1, src_fp);
fwrite(&buf, sizeof(char), 1, dest_fp);
}
fclose(src_fp);
fclose(dest_fp);
}
static Certificate*
load_keys(const char* filename, int* numKeys) {
Certificate* out = NULL;
*numKeys = 0;
FILE* f = fopen(filename, "r");
if (f == NULL) {
LOGE("opening %s: %s\n", filename, strerror(errno));
goto exit;
}
{
int i;
bool done = false;
while (!done) {
++*numKeys;
out = (Certificate*)realloc(out, *numKeys * sizeof(Certificate));
Certificate* cert = out + (*numKeys - 1);
cert->public_key = (RSAPublicKey*)malloc(sizeof(RSAPublicKey));
char start_char;
if (fscanf(f, " %c", &start_char) != 1) goto exit;
if (start_char == '{') {
// a version 1 key has no version specifier.
cert->public_key->exponent = 3;
cert->hash_len = SHA_DIGEST_SIZE;
} else if (start_char == 'v') {
int version;
if (fscanf(f, "%d {", &version) != 1) goto exit;
switch (version) {
case 2:
cert->public_key->exponent = 65537;
cert->hash_len = SHA_DIGEST_SIZE;
break;
case 3:
cert->public_key->exponent = 3;
cert->hash_len = SHA256_DIGEST_SIZE;
break;
case 4:
cert->public_key->exponent = 65537;
cert->hash_len = SHA256_DIGEST_SIZE;
break;
default:
goto exit;
}
}
RSAPublicKey* key = cert->public_key;
if (fscanf(f, " %i , 0x%x , { %u",
&(key->len), &(key->n0inv), &(key->n[0])) != 3) {
goto exit;
}
if (key->len != RSANUMWORDS) {
printf("key length (%d) does not match expected size\n", key->len);
goto exit;
}
for (i = 1; i < key->len; ++i) {
if (fscanf(f, " , %u", &(key->n[i])) != 1) goto exit;
}
if (fscanf(f, " } , { %u", &(key->rr[0])) != 1) goto exit;
for (i = 1; i < key->len; ++i) {
if (fscanf(f, " , %u", &(key->rr[i])) != 1) goto exit;
}
fscanf(f, " } } ");
// if the line ends in a comma, this file has more keys.switch (fgetc(f)) {
case ',':
// more keys to come.break;
case EOF:
done = true;
break;
default:
LOGE("unexpected character between keys\n");
goto exit;
}
LOGI("read key e=%d hash=%d\n", key->exponent, cert->hash_len);
}
}
fclose(f);
return out;
exit:
if (f) fclose(f);
free(out);
*numKeys = 0;
return NULL;
}
static void subM(const RSAPublicKey* key,
uint32_t* a) {
int64_t A = 0;
int i;
for (i = 0; i < key->len; ++i) {
A += (uint64_t)a[i] - key->n[i];
a[i] = (uint32_t)A;
A >>= 32;
}
}
// return a[] >= modstatic int geM(const RSAPublicKey* key,
const uint32_t* a) {
int i;
for (i = key->len; i;) {
–i;
if (a[i] < key->n[i]) return 0;
if (a[i] > key->n[i]) return 1;
}
return 1; // equal}
// montgomery c[] += a * b[] / R % modstatic void montMulAdd(const RSAPublicKey* key,
uint32_t* c,
const uint32_t a,
const uint32_t* b) {
uint64_t A = (uint64_t)a * b[0] + c[0];
uint32_t d0 = (uint32_t)A * key->n0inv;
uint64_t B = (uint64_t)d0 * key->n[0] + (uint32_t)A;
int i;
for (i = 1; i < key->len; ++i) {
A = (A >> 32) + (uint64_t)a * b[i] + c[i];
B = (B >> 32) + (uint64_t)d0 * key->n[i] + (uint32_t)A;
c[i - 1] = (uint32_t)B;
}
A = (A >> 32) + (B >> 32);
c[i - 1] = (uint32_t)A;
if (A >> 32) {
subM(key, c);
}
}
// montgomery c[] = a[] * b[] / R % modstatic void montMul(const RSAPublicKey* key,
uint32_t* c,
const uint32_t* a,
const uint32_t* b) {
int i;
for (i = 0; i < key->len; ++i) {
c[i] = 0;
}
for (i = 0; i < key->len; ++i) {
montMulAdd(key, c, a[i], b);
}
}
// In-place public exponentiation.
// Input and output big-endian byte array in inout.static void modpow(const RSAPublicKey* key,
uint8_t* inout) {
uint32_t a[RSANUMWORDS];
uint32_t aR[RSANUMWORDS];
uint32_t aaR[RSANUMWORDS];
uint32_t* aaa = 0;
int i;
// Convert from big endian byte array to little endian word array.for (i = 0; i < key->len; ++i) {
uint32_t tmp =
(inout[((key->len - 1 - i) * 4) + 0] << 24) |
(inout[((key->len - 1 - i) * 4) + 1] << 16) |
(inout[((key->len - 1 - i) * 4) + 2] << 8) |
(inout[((key->len - 1 - i) * 4) + 3] << 0);
a[i] = tmp;
}
if (key->exponent == 65537) {
aaa = aaR; // Re-use location.
montMul(key, aR, a, key->rr); // aR = a * RR / R mod Mfor (i = 0; i < 16; i += 2) {
montMul(key, aaR, aR, aR); // aaR = aR * aR / R mod M
montMul(key, aR, aaR, aaR); // aR = aaR * aaR / R mod M }
montMul(key, aaa, aR, a); // aaa = aR * a / R mod M
} else if (key->exponent == 3) {
aaa = aR; // Re-use location.
montMul(key, aR, a, key->rr); /* aR = a * RR / R mod M */
montMul(key, aaR, aR, aR); /* aaR = aR * aR / R mod M */
montMul(key, aaa, aaR, a); /* aaa = aaR * a / R mod M */
}
// Make sure aaa < mod; aaa is at most 1x mod too large.if (geM(key, aaa)) {
subM(key, aaa);
}
// Convert to bigendian byte arrayfor (i = key->len - 1; i >= 0; --i) {
uint32_t tmp = aaa[i];
*inout++ = tmp >> 24;
*inout++ = tmp >> 16;
*inout++ = tmp >> 8;
*inout++ = tmp >> 0;
}
}
int RSA_verify1(const RSAPublicKey *key,
const uint8_t *signature,
const int len,
const char *origin,
const int origin_length,
const int hash_len) {
uint8_t buf[RSANUMBYTES];
int i;
const uint8_t* padding_hash;
uint8_t origin_hash[32];
if (key->len != RSANUMWORDS) {
return 0; // Wrong key passed in. }
if (len != sizeof(buf)) {
return 0; // Wrong input length. }
if (hash_len != SHA_DIGEST_SIZE &&
hash_len != SHA256_DIGEST_SIZE) {
return 0; // Unsupported hash. }
if (key->exponent != 3 && key->exponent != 65537) {
fprintf(log_f, "%s, %d \n", __func__, __LINE__);
return 0; // Unsupported exponent. }
SHA256_hash(origin, origin_length, origin_hash);
uint8_t* p_hash = origin_hash;
fprintf(log_f,"\n the hash calculated from origin file: \n");
for( i=0; i< 32; i++){
fprintf(log_f, "%0X, ", *p_hash);
p_hash++;
}
for (i = 0; i < len; ++i) { // Copy input to local workspace.
buf[i] = signature[i];
}
modpow(key, buf); // In-place exponentiation.for( i=0; i < len - hash_len; ++i){
if( buf[i] != sha256_padding[i] ){
printf("padding: buf[%d]=%0X \n", i, buf[i]);
return 0;
}
}
fprintf(log_f, "\n the hash decrypted from signature: \n");
for (i = len - hash_len; i < len; ++i) {
fprintf(log_f, "%0X, ", buf[i]);
if( buf[i] != origin_hash[i -( len - hash_len)] ){
fprintf(log_f, "hash: buf[%d]=%0X, origin_hash[%d]=%0X \n",
i, buf[i], i -( len - hash_len), origin_hash[i -( len - hash_len)]);
return 0;
}
}
return 1; // All checked out OK.}
unsigned char check_rsa_sha256(char *file_name){
FILE *fp = NULL;
FILE *fp1 = NULL;
unsigned char buf [256];
char *origin_buf;
unsigned char result;
char *signature_file = “cw_signature”;
char *origin_file = “cw_origin”;
char c = 1;
chdir("/data/media/0");
fp = fopen(file_name, "r");
if( fp == NULL ) {
printf(" %s, open %s error \n" , __func__, file_name);
return -1;
}
// read signature into file
fp1 = fopen(signature_file, "w");
fread(buf, sizeof(char), 256, fp);
fwrite(buf, sizeof(char), 256, fp1);
fclose(fp1);
// read origin into file
fp1 = fopen(origin_file, "w");
do {
if( fread(&c, sizeof(char), 1, fp) != 0 ) {
fwrite(&c, sizeof(char), 1, fp1);
fprintf(log_f, "%c", c);
}
}while ( ! feof(fp) ) ;
fclose(fp1);
fclose(fp);
fp1 = fopen(origin_file, "r");
fseek(fp1, 0, SEEK_END);
int origin_size =(int)ftell(fp1);
fseek(fp1, 0, SEEK_SET);
origin_buf = (char *) malloc ( sizeof(char) * origin_size);
fread(origin_buf, sizeof(char), origin_size, fp1);
fclose(fp1);
int num_keys = 1;
Certificate* cert = NULL;
if(ensure_path_mounted("/system") == 0 ){
cert = load_keys("/system/etc/key_file", &num_keys);
fprintf(log_f, "mount system partision success, load keys finish. \n");
ensure_path_unmounted("/system");
}else{
fprintf(log_f, "mount system partision fail. \ n");
ensure_path_unmounted("/system");
return 0;
}
RSAPublicKey* test_key = cert->public_key;
/*
SHA256_CTX sha256_ctx;
SHA256_init(&sha256_ctx);
SHA256_update(&sha256_ctx, origin_buf, 32);
const uint8_t* hash = SHA256_final(&sha256_ctx);
*/
fprintf(log_f, “begin rsa sha256 verification. \n”);
result = RSA_verify1(test_key, buf , RSANUMBYTES, origin_buf, origin_size, 32);
free(origin_buf);
remove("/data/media/0/cw_origin");
remove("/data/media/0/cw_signature");
return result;
}
static void copy_file_to_data()
{
if(ensure_path_mounted("/data") == 0 ){
copy_file("/data/media/0/cwpkg.zip", “/data/data/cwtemp/cwpkg.zip”);
copy_file("/data/media/0/cw.prop", “/data/data/cwtemp/cw.prop”);
fprintf(log_f, “copy cwpkg.zip and cw.prop to /data/data/cwtemp/ finish. \n”);
}else{
fprintf(log_f, “mount /data failure. \n”);
}
ensure_path_unmounted("/data");
}
static int verify_file1()
{
//if ( (ensure_path_mounted("/sdcard") == 0 ) ) {if(access("/data/media/0/cw.crc", 0) == 0 &&
access("/data/media/0/cw.prop", 0) == 0 && access("/data/media/0/cwpkg.zip", 0) == 0 ) {
fprintf(log_f, “<---------- cota check --------------> \n”);
char *path= NULL;
char *str = NULL;
char *device = NULL;
unsigned long crc_r = 0;
unsigned long crc_c = 0;
unsigned int check = 0 ;
char cwd[80];
// rsa-sha256if ( check_rsa_sha256("cw.crc") == 1){
check |= 0x0001;
fprintf(log_f, "cw.crc rsa_sha256 check pass. \n");
}else{
check &= ~0x0001;
fprintf(log_f, "cw.crc rsa_sha256 check not pass. \n");
//goto check_exit; }
if ( check_rsa_sha256("cw.prop") == 1){
check |= 0x0010;
fprintf(log_f, "cw.prop rsa_sha256 check pass. \n");
}else{
check &= ~0x0010;
fprintf(log_f, "cw.prop rsa_sha256 check not pass. \n");
//goto check_exit; }
// check project
path="/data/media/0/cw.crc";
str = find_str(path, "project:", 256);
if(ensure_path_mounted("/system") == 0 ){
device = find_str("/system/build.prop", "ro.product.device=", 0);
if(strcmp(str, device)==0){
check |= 0x0002;
fprintf(log_f, "project check pass. project:%s, ro.product.device=%s \n", str, device);
}else{
check &= ~0x0002;
fprintf(log_f, "project check not pass. project:%s, ro.product.device=%s \n", str, device);
//goto check_exit; }
free(device);
}else{
fprintf(log_f, "mount system partion fail \n");
//goto check_exit; }
ensure_path_unmounted("/system") ;
free(str);
// check cid
path="/data/media/0/cw.crc";
str = find_str(path, "cid:", 256);
if(ensure_path_mounted("/system") == 0 ){
device = find_str("/system/build.prop", "ro.cid=", 0);
if(strcmp(str, device)==0){
check |= 0x0020;
fprintf(log_f, "cid check pass. cid:%s, ro.cid=%s \n", str, device);
}else{
check &= ~0x0020;
//check |= 0x0020;
fprintf(log_f, "cid check not pass. cid:%s, ro.cid=%s \n", str, device);
//goto check_exit; }
free(device);
}else{
fprintf(log_f, "mount system partion fail \n");
//goto check_exit; }
ensure_path_unmounted("/system") ;
free(str);
// check cwpkg.zip crc
str = find_str(path, "cwpkg.zip==0x", 256);
sscanf(str, "%0x", &crc_r);
crc_c = get_crc("/data/media/0/cwpkg.zip");
if( crc_r == crc_c ){
check |= 0x0004;
fprintf(log_f, "cwpkg.zip check pass. crc_r=%0x, crc_c=%0x. \n ", crc_r, crc_c);
}else{
check &= ~0x0004;
fprintf(log_f, "cwpkg.zip check not pass. crc_r=%0x, crc_c=%0x. \n ", crc_r, crc_c);
//goto check_exit; }
free(str);
// check cw.prop crc
str = find_str(path, "cw.prop==0x", 256);
sscanf(str, "%0x", &crc_r);
crc_c = get_crc("/data/media/0/cw.prop");
if( crc_r == crc_c ){
check |= 0x0008;
fprintf(log_f, "cw.prop check pass. crc_r=%0x, crc_c=%0x. \n ", crc_r, crc_c);
}else{
check &= ~0x0008;
fprintf(log_f, "cw.prop check not pass. crc_r=%0x, crc_c=%0x. \n ", crc_r, crc_c);
//goto check_exit; }
free(str);
fprintf(log_f, "check=%0X \n", check);
if( check == 0x003F ) {
goto check_success;
}else{
goto check_exit;
}
}else{
fprintf(log_f, "cota file not exist. \n");
}
//}
check_exit:
fprintf(log_f, “verification fail. \n”);
return 0;
check_success:
fprintf(log_f, “all verification success. \n” );
return 1;
}
#endifswitch (chosen_item) {
#ifdef HTC_COTA_SUPPORT
case Device::APPLY_COTA_UPDATE:
ensure_path_mounted("/data");
log_f = fopen("/data/data/recover_log", “w”);
fprintf(log_f, “aplly cota update. \n”);
if(verify_file1() == 1 ) {
copy_file_to_data();
}
fclose(log_f);
ensure_path_unmounted("/data");
return;
#endif