[超级链接:Java并发学习系列-绪论]
[系列序章:Java并发43:并发集合系列-序章]
原文地址:http://cmsblogs.com/?p=2413
DelayQueue是一个支持延时获取元素的无界阻塞队列。
里面的元素全部都是“可延期”的元素,列头的元素是最先“到期”的元素。
如果队列里面没有元素到期,是不能从列头获取元素的,哪怕有元素也不行。
也就是说只有在延迟期到时才能够从队列中取元素。
DelayQueue主要用于两个方面:
DelayQueue实现的关键主要有如下几个:
ReentrantLock、Condition这两个对象就不需要阐述了,他是实现整个BlockingQueue的核心。
PriorityQueue是一个支持优先级线程排序的队列(参考Java并发52:PriorityBlockingQueue)。
leader后面阐述。这里我们先来了解Delay,他是实现延时操作的关键。
Delayed接口是用来标记那些应该在给定延迟时间之后执行的对象。
它定义了一个long getDelay(TimeUnit unit)方法,该方法返回与此对象相关的的剩余时间。
同时实现该接口的对象必须定义一个compareTo 方法,该方法提供与此接口的 getDelay 方法一致的排序。
public interface Delayed extends Comparable<Delayed> {
long getDelay(TimeUnit unit);
}
如何使用该接口呢?上面说的非常清楚了,实现该接口的getDelay()方法,同时定义compareTo()方法即可。
先看DelayQueue的定义:
public class DelayQueue<E extends Delayed> extends AbstractQueue<E>
implements BlockingQueue {
/** 可重入锁 */
private final transient ReentrantLock lock = new ReentrantLock();
/** 支持优先级的BlockingQueue */
private final PriorityQueue q = new PriorityQueue();
/** 用于优化阻塞 */
private Thread leader = null;
/** Condition */
private final Condition available = lock.newCondition();
/**
* 省略很多代码
*/
}
看了DelayQueue的内部结构就对上面几个关键点一目了然了。
但是这里有一点需要注意,DelayQueue的元素都必须继承Delayed接口。
同时也可以从这里初步理清楚DelayQueue内部实现的机制了:
public boolean offer(E e) {
final ReentrantLock lock = this.lock;
lock.lock();
try {
// 向 PriorityQueue中插入元素
q.offer(e);
// 如果当前元素的对首元素(优先级最高),leader设置为空,唤醒所有等待线程
if (q.peek() == e) {
leader = null;
available.signal();
}
// 无界队列,永远返回true
return true;
} finally {
lock.unlock();
}
}
offer(E e)就是往PriorityQueue中添加元素,具体可以参考(参考Java并发52:PriorityBlockingQueue)。
整个过程还是比较简单,但是在判断当前元素是否为对首元素,如果是的话则设置leader=null,这是非常关键的一个步骤,后面阐述。
public E take() throws InterruptedException {
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
for (;;) {
// 对首元素
E first = q.peek();
// 对首为空,阻塞,等待off()操作唤醒
if (first == null)
available.await();
else {
// 获取对首元素的超时时间
long delay = first.getDelay(NANOSECONDS);
// <=0 表示已过期,出对,return
if (delay <= 0)
return q.poll();
first = null; // don't retain ref while waiting
// leader != null 证明有其他线程在操作,阻塞
if (leader != null)
available.await();
else {
// 否则将leader 设置为当前线程,独占
Thread thisThread = Thread.currentThread();
leader = thisThread;
try {
// 超时阻塞
available.awaitNanos(delay);
} finally {
// 释放leader
if (leader == thisThread)
leader = null;
}
}
}
}
} finally {
// 唤醒阻塞线程
if (leader == null && q.peek() != null)
available.signal();
lock.unlock();
}
}
首先是获取对首元素,如果对首元素的延时时间 delay <= 0 ,则可以出对了,直接return即可。
否则设置first = null,这里设置为null的主要目的是为了避免内存泄漏。
如果 leader != null 则表示当前有线程占用,则阻塞,否则设置leader为当前线程,然后调用awaitNanos()方法超时等待。
这里为什么如果不设置first = null,则会引起内存泄漏呢?
线程A到达,列首元素没有到期,设置leader = 线程A,这时线程B来了因为leader != null,则会阻塞,线程C一样。假如线程阻塞完毕了,获取列首元素成功,出列。这个时候列首元素应该会被回收掉,但是问题是它还被线程B、线程C持有着,所以不会回收,这里只有两个线程,如果有线程D、线程E…呢?这样会无限期的不能回收,就会造成内存泄漏。
这个入队、出对过程和其他的阻塞队列没有很大区别,无非是在出对的时候增加了一个到期时间的判断。
同时通过leader来减少不必要阻塞。