数据仓库维度建模

维度建模法

维度建模将信息组织到结构中,这些结构通常对应于分析者希望对数据仓库数据使用的查询方法。1999 年第三季度西北地区的食品销售额是多少?表示使用三个 维度(产品、地理、时间)指定要汇总的信息。
星型模式之所以广泛被使用, 在于针对各个维作了大量的预处理,如按照维进行预先的统计、分类、排序等。通过这些预处理,能够极大的提升数据仓库的处理能力。特别是针对 3NF 的建模方法,星型模式在性能上占据明显的优势。
同时,维度建模法的另外一个优点是 ,维度建模非常直观,紧紧围绕着业务模型,可以直观的反映出业务模型中的业务问题。不需要经过特别的抽象处理,即可以完成维度建模。这一点也是维度建模的优势。维度建模的优点可以总结如下:
a) 维度建模是可预测的标准框架。允许数据库系统和最终用户查询工具在数据方面生成强大的假设条件,这些数据主要在表现和性能方面起作用。
b) 星型连接模式的可预测框架能够忍受不可预知的用户行为变化。
c) 具有非常好的可扩展性,以便容纳不可预知的新数据源和新的设计决策。可以很方便在不改变模型粒度情况下,增加新的分析维度和事实,不需要重载数据,也不需要为了适应新的改变而重新编码。较好的扩展性意味着以前的所有应用都可以继续运行,并不会产生不同的结果。
但是,维度建模法的缺点也是非常明显的,由于在构建星型模式之前需要进行大量的数据预处理,因此会导致大量的数据处理工作。而且,当业务发生变化,需要重新进行维度的定义时,往往需要重新进行维度数据的预处理。而在这些与处理过程中,往往会导致大量的数据冗余。
另外一个维度建模法的缺点就是,如果只是依靠单纯的维度建模,不能保证数据来源的一致性和准确性, 而且在数据仓库的底层,不是特别适用于维度建模的方法。





你可能感兴趣的:(数据仓库维度建模)