drtoolbox: Matlab Toolbox for Dimensionality Reduction是Laurens van der Maaten开发的用来数据降维的工具箱,其中包含了著名的PCA,LDA算法,流行学习算法MLE,LLE,LPP,SNE,Isomap等,和度量学习算法LMNN,MCML,NCA等。具体列表如下(摘自原始网站)
- Principal Component Analysis (PCA)
- Probabilistic PCA
- Factor Analysis (FA)
- Classical multidimensional scaling (MDS)
- Sammon mapping
- Linear Discriminant Analysis (LDA)
- Isomap
- Landmark Isomap
- Local Linear Embedding (LLE)
- Laplacian Eigenmaps
- Hessian LLE
- Local Tangent Space Alignment (LTSA)
- Conformal Eigenmaps (extension of LLE)
- Maximum Variance Unfolding (extension of LLE)
- Landmark MVU (LandmarkMVU)
- Fast Maximum Variance Unfolding (FastMVU)
- Kernel PCA
- Generalized Discriminant Analysis (GDA)
- Diffusion maps
- Neighborhood Preserving Embedding (NPE)
- Locality Preserving Projection (LPP)
- Linear Local Tangent Space Alignment (LLTSA)
- Stochastic Proximity Embedding (SPE)
- Deep autoencoders (using denoising autoencoder pretraining)
- Local Linear Coordination (LLC)
- Manifold charting
- Coordinated Factor Analysis (CFA)
- Gaussian Process Latent Variable Model (GPLVM)
- Stochastic Neighbor Embedding (SNE)
- Symmetric SNE
- t-Distributed Stochastic Neighbor Embedding (t-SNE)
- Neighborhood Components Analysis (NCA)
- Maximally Collapsing Metric Learning (MCML)
- Large-Margin Nearest Neighbor (LMNN)
这里提供两种下载方式:
1.原始网站下载http://lvdmaaten.github.io/drtoolbox/
2.本站下载http://download.csdn.net/detail/henryvivid/9719637
下载解压后将文件夹放到MATLABtoolbox中并且添加路径即可,使用代码很简单
[mapped_data, mapping] = compute_mapping(data, method, # of dimensions, parameters)
其中data是原始数据,每行是一个样本点,每列是一个特征,# of dimensions表示目标维度。
参考文献:
31.L.J.P. van der Maaten and G.E. Hinton. Visualizing High-Dimensional Data Using t-SNE. Journal of Machine Learning
Research 9(Nov):2579-2605, 2008.
32.Goldberger J, Hinton G E, Roweis S T, et al. Neighbourhood components analysis[C]//Advances in neural information
processing systems. 2004: 513-520.
33.Globerson A, Roweis S T. Metric learning by collapsing classes[C]//Advances in neural information processing systems.
2005: 451-458.
34.Weinberger K Q, Blitzer J, Saul L K. Distance metric learning for large margin nearest neighbor classification[C]//
Advances in neural information processing systems. 2005: 1473-1480.
35.L.J.P. van der Maaten, E.O. Postma, and H.J. van den Herik. Dimensionality Reduction: A Comparative Review.
Tilburg University Technical Report, TiCC-TR 2009-005, 2009.