OpenCV3的接口变化挺大的,是原来OpenCV2.4.X版本的SVM不能用了,网上找了一下,找到了解决办法
1, 注意其中训练和自动训练的接口,还有labelMat一定要用CV_32SC1的类型。
Ptr<SVM> svm = SVM::create();
svm->setType(SVM::C_SVC);
svm->setKernel(SVM::RBF);
TermCriteria criteria = cvTermCriteria(CV_TERMCRIT_ITER + CV_TERMCRIT_EPS, 1000, FLT_EPSILON);
svm->setTermCriteria(criteria);
Mat labelMat1(labelMat.rows, labelMat.cols, CV_32SC1);
for (int i = 0; i < labelMat.rows; i++){
for (int j = 0; j < labelMat.cols; j++){
labelMat1.at<int>(i, j) = labelMat.at<float>(i, j);
}
}
//svm->train(trainMat, ROW_SAMPLE, labelMat);
Ptr<TrainData> traindata = ml::TrainData::create(trainMat, ROW_SAMPLE, labelMat1);
svm->trainAuto(traindata, 10);
svm->save("svm.xml");
1,注意load模型文件的时候用法。
#include
#include
#include
#include
#include
#include
#include
using namespace std;
using namespace cv;
class MySVM : public ml::SVM
{
public:
//获得SVM的决策函数中的alpha数组
double get_svm_rho()
{
return this->getDecisionFunction(0, svm_alpha, svm_svidx);
}
//获得SVM的决策函数中的rho参数,即偏移量
vector<float> svm_alpha;
vector<float> svm_svidx;
float svm_rho;
};
int main()
{
namedWindow("src", 0);
//检测窗口(64,128),块尺寸(16,16),块步长(8,8),cell尺寸(8,8),直方图bin个数9
//HOGDescriptor hog(Size(64, 128), Size(16, 16), Size(8, 8), Size(8, 8), 9);//HOG检测器,用来计算HOG描述子的
int DescriptorDim;//HOG描述子的维数,由图片大小、检测窗口大小、块大小、细胞单元中直方图bin个数决定
//Ptr svm = ml::SVM::create();
Ptrsvm = ml::SVM::load("svm.xml");
DescriptorDim = svm->getVarCount();//特征向量的维数,即HOG描述子的维数
Mat supportVector = svm->getSupportVectors();//支持向量的个数
int supportVectorNum = supportVector.rows;
cout << "支持向量个数:" << supportVectorNum << endl;
//-------------------------------------------------
vector<float> svm_alpha;
vector<float> svm_svidx;
float svm_rho;
svm_rho = svm->getDecisionFunction(0, svm_alpha, svm_svidx);
//-------------------------------------------------
Mat alphaMat = Mat::zeros(1, supportVectorNum, CV_32FC1);//alpha向量,长度等于支持向量个数
Mat supportVectorMat = Mat::zeros(supportVectorNum, DescriptorDim, CV_32FC1);//支持向量矩阵
Mat resultMat = Mat::zeros(1, DescriptorDim, CV_32FC1);//alpha向量乘以支持向量矩阵的结果
supportVectorMat = supportVector;
////将alpha向量的数据复制到alphaMat中
//double * pAlphaData = svm.get_alpha_vector();//返回SVM的决策函数中的alpha向量
for (int i = 0; i < supportVectorNum; i++)
{
alphaMat.at<float>(0, i) = svm_alpha[i];
}
//计算-(alphaMat * supportVectorMat),结果放到resultMat中
//gemm(alphaMat, supportVectorMat, -1, 0, 1, resultMat);//不知道为什么加负号?
resultMat = -1 * alphaMat * supportVectorMat;
//得到最终的setSVMDetector(const vector& detector)参数中可用的检测子
vector<float> myDetector;
//将resultMat中的数据复制到数组myDetector中
for (int i = 0; i < DescriptorDim; i++)
{
myDetector.push_back(resultMat.at<float>(0, i));
}
//最后添加偏移量rho,得到检测子
myDetector.push_back(svm_rho);
cout << "检测子维数:" << myDetector.size() << endl;
//设置HOGDescriptor的检测子
HOGDescriptor myHOG;
//myHOG.setSVMDetector(HOGDescriptor::getDefaultPeopleDetector());
myHOG.setSVMDetector(myDetector);
//myHOG.setSVMDetector(HOGDescriptor::getDefaultPeopleDetector());
/**************读入图片进行HOG行人检测******************/
//Mat src = imread("00000.jpg");
//Mat src = imread("2007_000423.jpg");
Size s1(128, 128);
Size s2(64, 64);
myHOG.winSize = s1;
myHOG.blockSize = s1;
myHOG.blockStride = s1;
myHOG.cellSize = s2;
myHOG.nbins = 9;
Mat frame;
while (true)
{
Mat src = imread("2.jpg");
vector found, found_filtered;//矩形框数组
//cout << "进行多尺度HOG人体检测" << endl;
myHOG.detectMultiScale(src, found, 0, Size(32, 32), Size(32, 32), 1.05, 2);//对图片进行多尺度行人检测
//cout << "找到的矩形框个数:" << found.size() << endl;
//找出所有没有嵌套的矩形框r,并放入found_filtered中,如果有嵌套的话,则取外面最大的那个矩形框放入found_filtered中
for (int i = 0; i < found.size(); i++)
{
Rect r = found[i];
int j = 0;
for (; j < found.size(); j++)
if (j != i && (r & found[j]) == r)
break;
if (j == found.size())
found_filtered.push_back(r);
}
//画矩形框,因为hog检测出的矩形框比实际人体框要稍微大些,所以这里需要做一些调整
for (int i = 0; i < found_filtered.size(); i++)
{
Rect r = found_filtered[i];
r.x += cvRound(r.width*0.1);
r.width = cvRound(r.width*0.8);
r.y += cvRound(r.height*0.07);
r.height = cvRound(r.height*0.8);
rectangle(src, r.tl(), r.br(), Scalar(255, 255, 255), 3);
}
imshow("src", src);
waitKey(0);//注意:imshow之后必须加waitKey,否则无法显示图像
}
}
参考资料:
1,http://www.geekylin.com/195.html