TensorFlow 2.0 笔记(四)—— 随机梯度下降

导数
偏微分
梯度

#tf.GradientTape
w = tf.constant(1.)
x = tf.constant(2.)
y = x*w

with tf.GradientTape() as tape:
    tape.watch([w])
    y2 = x * w
    
grad1 = tape.gradient(y, [w])

with tf.GradientTape() as tape:
    tape.watch([w])
    y2 = x * w
    
grad2 = tape.gradient(y2, [w])

with tf.GradientTape(persistent=True) as tape:
    tape.watch([w])
    y2 = x * w

grad3 = tape.gradient(y2, [w])
grad4 = tape.gradient(y2, [w])

二阶导数

import tensorflow as tf
w = tf.Variable(1.)
b = tf.Variable(2.)
x = tf.Variable(3.)
with tf.GradientTape() as t1:

    with tf.GradientTape() as t2:
        y = x * w + b
    dy_dw, dy_db = t2.gradient(y, [w, b])

d2y_dw2 = t1.gradient(dy_dw, w)

print(dy_dw)
print(dy_db)
print(d2y_dw2)

assert dy_dw.numpy() == 3.0
assert d2y_dw2 is None

激活函数

Sigmoid / Logistic

f ( x ) = σ ( x ) = 1 1 + e − x f(x) = \sigma(x)=\frac1{1+e^{-x}} f(x)=σ(x)=1+ex1
σ ′ = σ ( 1 − σ ) \sigma^\prime=\sigma(1-\sigma) σ=σ(1σ)

a = tf.linspace(-10., 10., 10)
with tf.GradientTape() as tape:
    tape.watch(a)
    y = tf.nn.sigmoid(a)

grads = tape.gradient(y, [a])

Tanh
f ( x ) = t a n h ( x ) = e x − e − x e x + e − x = 2 s i g m o i d ( 2 x ) − 1 f(x)=tanh(x)=\frac{e^x-e^{-x}}{e^x+e^{-x}}=2sigmoid(2x)-1 f(x)=tanh(x)=ex+exexex=2sigmoid(2x)1
d d x t a n h ( x ) = 1 − t a n h 2 ( x ) \frac{d}{dx}tanh(x) = 1-tanh^2(x) dxdtanh(x)=1tanh2(x)

a = tf.linspace(-5., 5., 10)
with tf.GradientTape() as tape:
    tape.watch(a)
    y = tf.nn.tanh(a)

grads = tape.gradient(y, [a])

Rectified Linear Unit
f ( x ) = { 0 f o r x < 0 x f o r x ⩾ 0 f(x)=\left \{ \begin{array}{rcl} 0 & for & x<0 \\ \\ x &for & x\geqslant0 \end{array}\right. f(x)=0xforforx<0x0
f ′ ( x ) = { 0 f o r x < 0 1 f o r x ⩾ 0 f^\prime(x)=\left \{ \begin{array}{rcl} 0 & for & x<0 \\ \\ 1 &for & x\geqslant0 \end{array}\right. f(x)=01forforx<0x0

a = tf.linspace(-1., 1., 10)
tf.nn.relu(a)
tf.nn.leaky_relu(a)
Typical Loss
  • Mean Squared Error
    • l o s s = ∑ [ y − ( x w + b ) ] 2 loss =\sum[y-(xw+b)]^2 loss=[y(xw+b)]2
    • L 2 − n o r m = ∣ ∣ y − ( x w + b ) ∣ ∣ 2 L_{2-norm}=||y-(xw+b)||_2 L2norm=y(xw+b)2
    • l o s s = n o r m ( y − ( x w + b ) ) 2 loss=norm(y-(xw+b))^2 loss=norm(y(xw+b))2
  • MSE Derivative
    • l o s s = ∑ [ y − f θ ( x ) ] 2 loss=\sum[y-f_\theta(x)]^2 loss=[yfθ(x)]2
    • ∇ l o s s ∇ θ = 2 ∑ [ y − f θ ( x ) ] ∗ ∇ f θ ( x ) ∇ θ \frac{\nabla loss}{\nabla\theta}=2\sum[y-f_\theta(x)]*\frac{\nabla f_\theta(x)}{\nabla\theta} θloss=2[yfθ(x)]θfθ(x)
x = tf.random.normal([2, 4])
w = tf.random.normal([4, 3])
b = tf.zeros([3])
y = tf.constant([2, 0])

with tf.GradientTape() as tape:
    tape.watch([w, b]) #tf.Variable则不需要
    prob = tf.nn.softmax(x@w+b, axis=1)
    loss = tf.reduce_mean(tf.losses.MSE(tf.one_hot(y, depth=3), prob))

grads = tape.gradient(loss, [w, b])
grads[0]
grads[1]
  • Cross Entropy Loss
    • binary
    • multi-class
    • softmax
      • soft version of max
        S ( y i ) = e y i ∑ j e y i S(y_i)=\frac{e^{y_i}}{\sum_{j}e^{y_i}} S(yi)=jeyieyi
    • Leave it to Logistic Regression Part
  • SoftMax Derivative
    p i = e a i ∑ k = 1 N e a k p_i=\frac{e^{a_i}}{\sum_{k=1}^Ne^{a_k}} pi=k=1Neakeai
    ∂ p i ∂ a j = { p i ( 1 − p j ) i f i = j − p j . p i i f i ≠ j \frac{\partial p_i}{\partial a_j} =\left \{ \begin{array}{rcl} p_i(1-p_j) & if & i=j \\ \\ -p_j.p_i &if & i\neq j \end{array}\right. ajpi=pi(1pj)pj.piififi=ji=j

    Or using Kronecker delta δ i j = { 1 i f i = j 0 i f i ≠ j \delta_{ij}=\left \{ \begin{array}{rcl} 1 & if & i=j \\ \\ 0 &if & i\neq j \end{array}\right. δij=10ififi=ji=j

∂ p i ∂ a j = p i ( δ i j − p j ) \frac{\partial p_i}{\partial a_j} = p_i(\delta_{ij}-p_j) ajpi=pi(δijpj)

x = tf.random.normal([2, 4])
w = tf.random.normal([4, 3])
b = tf.zeros([3])
y = tf.constant([2, 0])

with tf.GradientTape() as tape:
    tape.watch([w, b])
    logits = x@w+b
    loss = tf.reduce_mean(tf.losses.categorical_crossentropy(tf.one_hot(y, depth=3), logits, from_logits=True))

grads = tape.gradient(loss, [w, b])
grads[0]
grads[1]

感知机及其梯度

单输出感知机

Perceptron

  • y = X W + b y=XW+b y=XW+b
  • y = ∑ x i ∗ w i + b y=\sum x_i*w_i+b y=xiwi+b

Derivative
E = 1 2 ( O 0 1 − t ) 2 E=\frac{1}{2}(O_0^1-t)^2 E=21(O01t)2
∂ E ∂ w j 0 = ( O 0 − t ) ∂ O 0 ∂ w j 0 \frac{\partial E}{\partial w_{j0}}=(O_0-t)\frac{\partial O_0}{\partial w_{j0}} wj0E=(O0t)wj0O0
∂ E ∂ w j 0 = ( O 0 − t ) ∂ σ ( x 0 ) ∂ w j 0 \frac{\partial E}{\partial w_{j0}}=(O_0-t)\frac{\partial \sigma(x_0)}{\partial w_{j0}} wj0E=(O0t)wj0σ(x0)
∂ E ∂ w j 0 = ( O 0 − t ) σ ( x 0 ) ( 1 − σ ( x 0 ) ) ∂ x 0 1 ∂ w j 0 \frac{\partial E}{\partial w_{j0}}=(O_0-t)\sigma(x_0)(1-\sigma(x_0))\frac{\partial x_0^1}{\partial w_{j0}} wj0E=(O0t)σ(x0)(1σ(x0))wj0x01
∂ E ∂ w j 0 = ( O 0 − t ) O 0 ( 1 − O 0 ) ∂ x 0 1 ∂ w j 0 \frac{\partial E}{\partial w_{j0}}=(O_0-t)O_0(1-O_0)\frac{\partial x_0^1}{\partial w_{j0}} wj0E=(O0t)O0(1O0)wj0x01
∂ E ∂ w j 0 = ( O 0 − t ) O 0 ( 1 − O 0 ) x j 0 \frac{\partial E}{\partial w_{j0}}=(O_0-t)O_0(1-O_0)x_j^0 wj0E=(O0t)O0(1O0)xj0

x = tf.random.normal([1, 3])
w = tf.ones([3, 1])
b = tf.ones([1])
y = tf.constant([1])

with tf.GradientTape() as tape:
    tape.watch([w, b])
    prob = tf.nn.sigmoid(x@w+b)
    loss = tf.reduce_mean(tf.losses.MSE(y, prob))

grads = tape.gradient(loss, [w, b])
grads[0]
grads[1]

多输出感知机
Derivative
E = 1 2 ∑ ( O i 1 − t i ) 2 E=\frac{1}{2}\sum(O_i^1-t_i)^2 E=21(Oi1ti)2
∂ E ∂ w j k = ( O k − t k ) ∂ O k ∂ w j k \frac{\partial E}{\partial w_{jk}}=(O_k-t_k)\frac{\partial O_k}{\partial w_{jk}} wjkE=(Oktk)wjkOk
∂ E ∂ w j k = ( O k − t k ) ∂ σ ( x k ) ∂ w j k \frac{\partial E}{\partial w_{jk}}=(O_k-t_k)\frac{\partial \sigma(x_k)}{\partial w_{jk}} wjkE=(Oktk)wjkσ(xk)
∂ E ∂ w j k = ( O k − t k ) σ ( x k ) ( 1 − σ ( x k ) ) ∂ x k 1 ∂ w j k \frac{\partial E}{\partial w_{jk}}=(O_k-t_k)\sigma(x_k)(1-\sigma(x_k))\frac{\partial x_k^1}{\partial w_{jk}} wjkE=(Oktk)σ(xk)(1σ(xk))wjkxk1
∂ E ∂ w j k = ( O k − t k ) O k ( 1 − O k ) ∂ x k 1 ∂ w j k \frac{\partial E}{\partial w_{jk}}=(O_k-t_k)O_k(1-O_k)\frac{\partial x_k^1}{\partial w_{jk}} wjkE=(Oktk)Ok(1Ok)wjkxk1
∂ E ∂ w j k = ( O k − t k ) O k ( 1 − O k ) x j 0 \frac{\partial E}{\partial w_{jk}}=(O_k-t_k)O_k(1-O_k)x_j^0 wjkE=(Oktk)Ok(1Ok)xj0

x = tf.random.normal([2, 4])
w = tf.random.normal([4, 3])
b = tf.zeros([3])
y = tf.constant([2, 0])

with tf.GradientTape() as tape:
    tape.watch([w, b])
    prob = tf.nn.softmax(x@w+b, axis=1)
    loss = tf.reduce_mean(tf.losses.MSE(tf.one_hot(y, depth=3), prob))

grads = tape.gradient(loss, [w, b])
grads[0]
grads[1]

链式法则

x = tf.Variable(1.)
w1 = tf.Variable(2.)
b1 = tf.Variable(1.)
w2 = tf.Variable(2.)
b2 = tf.Variable(1.)

with tf.GradientTape(persistent=True) as tape:
    y1 = x * w1 + b1
    y2 = y1 * w2 + b2

dy2_dy1 = tape.gradient(y2, [y1])[0]
dy1_dw1 = tape.gradient(y1, [w1])[0]
dy2_dw1 = tape.gradient(y2, [w1])[0]

多层感知机模型

∂ E ∂ w j k = ( O k − t k ) O k ( 1 − O k ) O j J \frac{\partial E}{\partial w_{jk}}=(O_k-t_k)O_k(1-O_k)O_j^J wjkE=(Oktk)Ok(1Ok)OjJ
∂ E ∂ w j k = δ k K O j J \frac{\partial E}{\partial w_{jk}}= \qquad\delta_k^K \qquad O_j^J wjkE=δkKOjJ
∂ E ∂ w i j = ∂ ∂ w i j 1 2 ∑ k ∈ K ( O k − t k ) 2 \frac{\partial E}{\partial w_{ij}}= \frac{\partial }{\partial w_{ij}}\frac{1}{2}\sum_{k \in K}(O_k -t_k)^2 wijE=wij21kK(Oktk)2
∂ E ∂ w i j = ∑ k ∈ K ( O k − t k ) ∂ ∂ W i j O k \frac{\partial E}{\partial w_{ij}}= \sum_{k \in K}(O_k -t_k)\frac{\partial}{\partial W_{ij}}O_k wijE=kK(Oktk)WijOk
∂ E ∂ w i j = ∑ k ∈ K ( O k − t k ) ∂ ∂ W i j σ ( x k ) \frac{\partial E}{\partial w_{ij}}= \sum_{k \in K}(O_k -t_k)\frac{\partial}{\partial W_{ij}}\sigma(x_k) wijE=kK(Oktk)Wijσ(xk)
∂ E ∂ w i j = ∑ k ∈ K ( O k − t k ) O k ( 1 − O k ) ∂ x k ∂ O j . ∂ O j ∂ W i j \frac{\partial E}{\partial w_{ij}}= \sum_{k \in K}(O_k -t_k)O_k(1-O_k)\frac{\partial x_k}{\partial O_j}.\frac{\partial O_j}{\partial W_{ij}} wijE=kK(Oktk)Ok(1Ok)Ojxk.WijOj
∂ E ∂ w i j = ∑ k ∈ K ( O k − t k ) O k ( 1 − O k ) W j k ∂ O j ∂ W i j \frac{\partial E}{\partial w_{ij}}= \sum_{k \in K}(O_k -t_k)O_k(1-O_k)W_{jk}\frac{\partial O_j}{\partial W_{ij}} wijE=kK(Oktk)Ok(1Ok)WjkWijOj
∂ E ∂ w i j = ∂ O j ∂ W i j ∑ k ∈ K ( O k − t k ) O k ( 1 − O k ) W j k \frac{\partial E}{\partial w_{ij}}= \frac{\partial O_j}{\partial W_{ij}}\sum_{k \in K}(O_k -t_k)O_k(1-O_k)W_{jk} wijE=WijOjkK(Oktk)Ok(1Ok)Wjk
∂ E ∂ w i j = O j ( 1 − O j ) ∂ x j ∂ W i j ∑ k ∈ K ( O k − t k ) O k ( 1 − O k ) W j k \frac{\partial E}{\partial w_{ij}}= O_j(1-O_j)\frac{\partial x_j}{\partial W_{ij}}\sum_{k \in K}(O_k -t_k)O_k(1-O_k)W_{jk} wijE=Oj(1Oj)WijxjkK(Oktk)Ok(1Ok)Wjk
∂ E ∂ w i j = O j ( 1 − O j ) O i ∑ k ∈ K ( O k − t k ) O k ( 1 − O k ) W j k \frac{\partial E}{\partial w_{ij}}= O_j(1-O_j)O_i\sum_{k \in K}(O_k -t_k)O_k(1-O_k)W_{jk} wijE=Oj(1Oj)OikK(Oktk)Ok(1Ok)Wjk
∂ E ∂ w i j = O i O j ( 1 − O j ) ∑ k ∈ K δ k W j k \frac{\partial E}{\partial w_{ij}}= O_iO_j(1-O_j)\sum_{k \in K}\delta_kW_{jk} wijE=OiOj(1Oj)kKδkWjk

For an output layer node k ∈ K k\in K kK
∂ E ∂ W j k = O j δ k \frac{\partial E}{\partial W_{jk}}=O_j\delta_k WjkE=Ojδk
where δ k = O k ( 1 − O k ) ( O k − t k ) \delta_k=O_k(1-O_k)(O_k-t_k) δk=Ok(1Ok)(Oktk)

For a hidden layer node j ∈ J j\in J jJ
∂ E ∂ W i j = O i δ j \frac{\partial E}{\partial W_{ij}}=O_i\delta_j WijE=Oiδj
where δ j = O j ( 1 − O j ) ∑ k ∈ K δ k W j k \delta_j=O_j(1-O_j)\sum_{k\in K}\delta_kW_{jk} δj=Oj(1Oj)kKδkWjk

函数优化

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D


def himmelblau(x):
    return (x[0] ** 2 + x[1] - 11) ** 2 + (x[0] + x[1] ** 2 - 7) ** 2


x = np.arange(-6, 6, 0.1)
y = np.arange(-6, 6, 0.1)
print('x,y range:', x.shape, y.shape)
X, Y = np.meshgrid(x, y)
print('X,Y maps:', X.shape, Y.shape)
Z = himmelblau([X, Y])

fig = plt.figure('himmelblau')
ax = fig.gca(projection='3d')
ax.plot_surface(X, Y, Z)
ax.view_init(60, -30)
ax.set_xlabel('x')
ax.set_ylabel('y')
plt.show()

x = tf.constant([-4., 0.])
for step in range(200):
    with tf.GradientTape() as tape:
        tape.watch(x)
        y = himmelblau(x)
        
    grads = tape.gradient(y, [x])[0]
    x -= 0.01 * grads
    
    if step % 20 == 0:
        print('step {}: x = {}, f(x) = {}'.format(step, x.numpy(), y.numpy()))

import os
import tensorflow as tf
import tensorflow_datasets as tfds

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

dataset, metadata = tfds.load('fashion_mnist', as_supervised=True, with_info=True)
train_dataset, test_dataset = dataset['train'], dataset['test']


def normalize(images, labels):
    images = tf.cast(images, tf.float32)
    images /= 255
    return images, labels


print("datasets", train_dataset.map(normalize))
train_dataset = train_dataset.map(normalize)
test_dataset = test_dataset.map(normalize)

num_train_examples = metadata.splits['train'].num_examples
num_test_examples = metadata.splits['test'].num_examples

BATCH_SIZE = 100
train_dataset = train_dataset.repeat().shuffle(num_train_examples).batch(BATCH_SIZE)
test_dataset = test_dataset.batch(BATCH_SIZE)

model = tf.keras.Sequential([
    tf.keras.layers.Dense(256, activation=tf.nn.relu),
    tf.keras.layers.Dense(128, activation=tf.nn.relu),
    tf.keras.layers.Dense(64, activation=tf.nn.relu),
    tf.keras.layers.Dense(32, activation=tf.nn.relu),
    tf.keras.layers.Dense(10)
])

model.build(input_shape=[None, 28*28])
model.summary()
optimizer = tf.keras.optimizers.Adam(lr=1e-3)


def main():
    for epoch in range(30):
        for step, (x,y) in enumerate(train_dataset):
            x = tf.reshape(x, [-1, 28*28])

            with tf.GradientTape() as tape:
                logits = model(x)
                y_ = tf.one_hot(y, depth=10)
                #loss_mse = tf.reduce_mean(tf.losses.MSE(y_, logits))
                loss_ce = tf.reduce_mean(tf.losses.categorical_crossentropy(y_, logits, from_logits=True))

            grads = tape.gradient(loss_ce, model.trainable_variables)
            optimizer.apply_gradients(zip(grads, model.trainable_variables))

            if step % 500 == 0:
                # test
                total_correct = 0
                total_num = 0
                for x, y in test_dataset:
                    x = tf.reshape(x, [-1, 28 * 28])
                    logits = model(x)
                    prob = tf.nn.softmax(logits, axis=1)
                    pred = tf.argmax(prob, axis=1)
                    correct = tf.equal(pred, y)
                    correct = tf.reduce_sum(tf.cast(correct, dtype=tf.int32)).numpy()

                    total_correct += int(correct)
                    total_num += x.shape[0]

                acc = total_correct / total_num
                print(epoch, step, 'loss:', float(loss_ce), 'test acc:', acc)


if __name__ == '__main__':
    main()

你可能感兴趣的:(机器学习,TensorFlow2.0)