本文将介绍一种基于深度学习和稀疏表达的人脸识别算法。首先,利用深度学习框架(VGGFace)提取人脸特征;其次,利用PCA对提取的特征进行降维;最后,利用稀疏表达分类实现特征匹配。我采用CMC曲线评价在AR数据库上的识别性能。最后我还提供了整个过程的code。
下面介绍利用VGGFace对人脸特征进行提取。我们利用的数据库为AR数据库,数据库的图例如下:
接下来我们利用VGGFace对人脸特征进行提取。
利用pca对数据降维,VGGFace提取出的特征为4096维,对提取的特征进行降维最后降到128维。
数据库一共有 C 个人,每个人有 k 张图片,那么每一个人的特征字典为 Dc={fc1,fc2,…,fck} , 那么 C 个人就组成一个Gallery特征字典 D={D1,D2,⋯,DC} 。给一定probe人脸x, 那么特征为 y=F(x) , 则稀疏表达可以有如下表达:
function cnn_vgg_faces()
%CNN_VGG_FACES Demonstrates how to use VGG-Face
clear all
clc
addpath PCA
run(fullfile(fileparts(mfilename('fullpath')),...
'..', 'matlab', 'vl_setupnn.m')) ;
net = load('data/models/vgg-face.mat') ;
list = dir('../data/AR');
C = 100;
img_list = list(3:end);
index = [1, 10];
%% 建立基于VGGFace的Gallery字典
dictionary = [];
for i = 1:C
disp(i)
numEachGalImg(i) = 0;
for j = 1:2
im = imread(strcat('../data/AR/',img_list((i-1)*26+index(j)).name));
im_ = single(im) ; % note: 255 range
im_ = imresize(im_, net.meta.normalization.imageSize(1:2)) ;
for k = 1:3
im1_(:,:,k) = im_;
end
im2_ = bsxfun(@minus,im1_,net.meta.normalization.averageImage) ;
res = vl_simplenn(net, im2_) ;
feature_p(:,j) = res(36).x(:);
end
numEachGalImg(i) = numEachGalImg(i) + size(feature_p,2);
dictionary = [dictionary feature_p];
end
%% PCA对特征进行降维
FaceContainer = double(dictionary');
[pcaFaces W meanVec] = fastPCA(FaceContainer,128);
X = pcaFaces;
[X,A0,B0] = scaling(X);
LFWparameter.mean = meanVec;
LFWparameter.A = A0;
LFWparameter.B = B0;
LFWparameter.V = W;
imfo = LFWparameter;
train_fea = (double(FaceContainer)-repmat(imfo.mean, size(FaceContainer,1), 1))*imfo.V;
dictionary = scaling(train_fea,1,imfo.A,imfo.B);
for i = 1:size(dictionary, 1)
dictionary(i,:) = dictionary(i,:)/norm(dictionary(i,:));
end
dictionary = double(dictionary);
totalGalKeys = sum(numEachGalImg);
cumNumEachGalImg = [0; cumsum(numEachGalImg')];
%% 利用稀疏编码进行特征匹配
% sparse coding parameters
if ~exist('opt_choice', 'var')
opt_choice = 1;
end
num_bases = 128;
beta = 0.4;
batch_size = size(dictionary, 1);
num_iters = 5;
if opt_choice==1
sparsity_func= 'L1';
epsilon = [];
elseif opt_choice==2
sparsity_func= 'epsL1';
epsilon = 0.01;
end
Binit = [];
fname_save = sprintf('../results/sc_%s_b%d_beta%g_%s', sparsity_func, num_bases, beta, datestr(now, 30));
AtA = dictionary*dictionary';
for i = 1:C
fprintf('%s \n',num2str(i));
tic
im = imread(strcat('../data/AR/',img_list((i-1)*26+26).name));
im_ = single(im) ; % note: 255 range
im_ = imresize(im_, net.meta.normalization.imageSize(1:2)) ;
for k = 1:3
im1_(:,:,k) = im_;
end
im2_ = bsxfun(@minus,im1_,net.meta.normalization.averageImage) ;
res = vl_simplenn(net, im2_) ;
feature_p = res(36).x(:);
feature_p = (double(feature_p)'-imfo.mean)*imfo.V;
feature_p = scaling(feature_p,1,imfo.A,imfo.B);
feature_p = feature_p/norm(feature_p, 2);
[B S stat] = sparse_coding(AtA,0, dictionary', double(feature_p'), num_bases, beta, sparsity_func, epsilon, num_iters, batch_size, fname_save, Binit);
for m = 1:length(numEachGalImg)
AA = S(cumNumEachGalImg(m)+1:cumNumEachGalImg(m+1),:);
X1 = dictionary(cumNumEachGalImg(m)+1:cumNumEachGalImg(m+1),:);
recovery = X1'*AA;
YY(m) = mean(sum((recovery'-double(feature_p)).^2));
end
score(:,i) = YY;
toc
end
accuracy = calrank(score1,1:1,'ascend');
fprintf('rank-1:%d/%%\n',accuracy*100);
文中以
calrank可以计算得到CMC曲线:参见http://blog.csdn.net/hlx371240/article/details/53482752。
最后得到rank-1为82%。
整个代码见资源,由于vgg-face 太大,可以自己到vgg的官网下载,然后放到../matconvnet-1.0-beta19\examples\data\models中。