使用HQL分析数据的脚本

清洗数据

#!/bin/bash

hadoop jar jar路径 类路径.NginxAccessETL $1

hive -e "
USE 数据库;

CREATE TABLE IF NOT EXISTS dwb_nginx_access_log(
    ip        string,
    time        string,
    path        string
)
PARTITIONED BY (day string)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t';

LOAD DATA INPATH '/nginx-access-etl/part-m-00000' INTO TABLE dwb_nginx_access_log PARTITION(day='$2');
"

分析数据并导入MySQL

#!/bin/bash

hive -e "
USE 数据库;

DROP TABLE IF EXISTS dwd_hour_page_log;
CREATE TABLE IF NOT EXISTS dwd_hour_page_log(
    ip          string,
    time        string,
    path        string
)
PARTITIONED BY (hour string);

set hive.exec.dynamic.partition.mode=nonstrict;

INSERT INTO TABLE dwd_hour_page_log PARTITION(hour)
SELECT ip
    , time
    , path
    , substring(time, 12, 2) hour
FROM dwb_nginx_access_log
WHERE time LIKE '$1%';

DELETE jar /root/nginx_log_UDF.jar;
ADD jar /root/nginx_log_UDF.jar;
CREATE TEMPORARY FUNCTION getPathPage as 'com.zhiyou100.udf.path.GetPathPage';
CREATE TEMPORARY FUNCTION getPathId as 'com.zhiyou100.udf.path.GetPathId';

DROP TABLE IF EXISTS dt_hour_page;
CREATE TABLE dt_hour_page AS
SELECT ip
    , path
    , time
    , getPathPage(path) page
    , getPathId(path) id
    , hour
    , substring(time, 15, 2) minute
    , substring(time, 18, 2) second
FROM dwd_hour_page_log;


DROP TABLE r_hour_page_pv;
CREATE TABLE r_hour_page_pv ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' AS
SELECT page
    , hour
    , COUNT(*) pv
    , '$1' day
FROM dt_hour_page
GROUP BY hour, page;
"



sqoop-export --connect jdbc:mysql://master:3306/nginx_access_log --username root --table hour_page_pv --export-dir /user/hive/warehouse/dw_nginx_access_log.db/r_hour_page_pv --input-fields-terminated-by '\t' -m 1 --P

echo "数据导出成功,请去 MySQL 查看"

你可能感兴趣的:(Linux)