直接加载整个模型
Pytorch保存和加载整个模型:
torch.save(model, 'model.pth')
model = torch.load('model.pth')
Pytorch保存和加载预训练模型参数:
torch.save(model.state_dict(), 'params.pth')
model.load_state_dict(torch.load('params.pth'))
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import time
import torch
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
BN_MOMENTUM = 0.1
model_urls = {
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
}
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1,
bias=False)
self.bn3 = nn.BatchNorm2d(planes * self.expansion,
momentum=BN_MOMENTUM)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class PoseResNet(nn.Module):
def __init__(self, block, layers, heads, head_conv, **kwargs):
self.inplanes = 64
self.deconv_with_bias = False
self.heads = heads
super(PoseResNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
# used for deconv layers
self.deconv_layers = self._make_deconv_layer(
3,
[256, 256, 256],
[4, 4, 4],
)
# self.final_layer = []
for head in sorted(self.heads):
num_output = self.heads[head]
if head_conv > 0:
fc = nn.Sequential(
nn.Conv2d(256, head_conv,
kernel_size=3, padding=1, bias=True),
nn.ReLU(inplace=True),
nn.Conv2d(head_conv, num_output,
kernel_size=1, stride=1, padding=0))
else:
fc = nn.Conv2d(
in_channels=256,
out_channels=num_output,
kernel_size=1,
stride=1,
padding=0
)
self.__setattr__(head, fc)
# self.final_layer = nn.ModuleList(self.final_layer)
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def _get_deconv_cfg(self, deconv_kernel, index):
if deconv_kernel == 4:
padding = 1
output_padding = 0
elif deconv_kernel == 3:
padding = 1
output_padding = 1
elif deconv_kernel == 2:
padding = 0
output_padding = 0
return deconv_kernel, padding, output_padding
def _make_deconv_layer(self, num_layers, num_filters, num_kernels):
assert num_layers == len(num_filters), \
'ERROR: num_deconv_layers is different len(num_deconv_filters)'
assert num_layers == len(num_kernels), \
'ERROR: num_deconv_layers is different len(num_deconv_filters)'
layers = []
for i in range(num_layers):
kernel, padding, output_padding = \
self._get_deconv_cfg(num_kernels[i], i)
planes = num_filters[i]
layers.append(
nn.ConvTranspose2d(
in_channels=self.inplanes,
out_channels=planes,
kernel_size=kernel,
stride=2,
padding=padding,
output_padding=output_padding,
bias=self.deconv_with_bias))
layers.append(nn.BatchNorm2d(planes, momentum=BN_MOMENTUM))
layers.append(nn.ReLU(inplace=True))
self.inplanes = planes
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
# print("out",x.size())
x = self.deconv_layers(x)
ret = {}
for head in self.heads:
ret[head] = self.__getattr__(head)(x)
return [ret]
def init_weights(self, num_layers, pretrained=True):
if pretrained:
# print('=> init resnet deconv weights from normal distribution')
for _, m in self.deconv_layers.named_modules():
if isinstance(m, nn.ConvTranspose2d):
# print('=> init {}.weight as normal(0, 0.001)'.format(name))
# print('=> init {}.bias as 0'.format(name))
nn.init.normal_(m.weight, std=0.001)
if self.deconv_with_bias:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
# print('=> init {}.weight as 1'.format(name))
# print('=> init {}.bias as 0'.format(name))
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
# print('=> init final conv weights from normal distribution')
for head in self.heads:
final_layer = self.__getattr__(head)
for i, m in enumerate(final_layer.modules()):
if isinstance(m, nn.Conv2d):
# nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
# print('=> init {}.weight as normal(0, 0.001)'.format(name))
# print('=> init {}.bias as 0'.format(name))
if m.weight.shape[0] == self.heads[head]:
if 'hm' in head:
nn.init.constant_(m.bias, -2.19)
else:
nn.init.normal_(m.weight, std=0.001)
nn.init.constant_(m.bias, 0)
#pretrained_state_dict = torch.load(pretrained)
url = model_urls['resnet{}'.format(num_layers)]
pretrained_state_dict = model_zoo.load_url(url)
print('=> loading pretrained model {}'.format(url))
self.load_state_dict(pretrained_state_dict, strict=False)
else:
print('=> imagenet pretrained model dose not exist')
print('=> please download it first')
raise ValueError('imagenet pretrained model does not exist')
resnet_spec = {18: (BasicBlock, [2, 2, 2, 2]),
34: (BasicBlock, [3, 4, 6, 3]),
50: (Bottleneck, [3, 4, 6, 3]),
101: (Bottleneck, [3, 4, 23, 3]),
152: (Bottleneck, [3, 8, 36, 3])}
def get_pose_net(num_layers, heads, head_conv):
block_class, layers = resnet_spec[num_layers]
model = PoseResNet(block_class, layers, heads, head_conv=head_conv)
model.init_weights(num_layers, pretrained=True)
return model
if __name__ == '__main__':
# heads = {'hm': 5, 'wh': 2, 'hps': 2}
# model= get_pose_net(34,heads,64)
model = torch.load('34.weights')
model.cuda()
model.eval()
x = torch.rand(1, 3, 512, 512).cuda()
for i in range(10):
t1 = time.time()
# out3, out4, out5 = model(x)
out3 = model(x)
# print(out3)
# print(out3.size())
# print(out4.size())
# print(out5.size())
cnt = time.time() - t1
print(cnt)
# torch.save(model, '34.weights')