那么,Stream API的性能到底如何呢,代码整洁的背后是否意味着性能的损耗呢?本文我们对Stream API的性能一探究竟。
为保证测试结果真实可信,我们将JVM运行在 -server 模式下,测试数据在GB量级,测试机器采用常见的商用服务器,配置如下:
OSCentOS 6.7 x86_64CPUIntel Xeon X5675, 12M Cache 3.06 GHz, 6 Cores 12 Threads内存96GBJDKjava version 1.8.0_91, Java HotSpot(TM) 64-Bit Server VM
测试方法和测试数据
性能测试并不是容易的事,Java性能测试更费劲,因为虚拟机对性能的影响很大,JVM对性能的影响有两方面:
-XX:+UseConcMarkSweepGC -Xms10G -Xmx10G -XX:CompileThreshold=10000
Stream并行执行时用到 ForkJoinPool.commonPool() 得到的线程池,为控制并行度我们使用Linux的 taskset 命令指定JVM可用的核数。
测试数据由程序随机生成。为防止一次测试带来的抖动,测试4次求出平均时间作为运行时间。
实验一 基本类型迭代
测试内容:找出整型数组中的最小值。对比for循环外部迭代和Stream API内部迭代性能。
测试程序代码:
/** * java -server -Xms10G -Xmx10G -XX:+PrintGCDetails * -XX:+UseConcMarkSweepGC -XX:CompileThreshold=1000 lee/IntTest * taskset -c 0-[0,1,3,7] java ... * @author CarpenterLee */ public class IntTest { public static void main(String[] args) { new IntTest().doTest(); } public void doTest(){ warmUp(); int[] lengths = { 10000, 100000, 1000000, 10000000, 100000000, 1000000000 }; for(int length : lengths){ System.out.println(String.format("---array length: %d---", length)); int[] arr = new int[length]; randomInt(arr); int times = 4; int min1 = 1; int min2 = 2; int min3 = 3; long startTime; startTime = System.nanoTime(); for(int i=0; i
测试结果如下图:
图中展示的是for循环外部迭代耗时为基准的时间比值。分析如下:
并行迭代性能跟可利用的核数有关,上图中的并行迭代使用了全部12个核,为考察使用核数对性能的影响,我们专门测试了不同核数下的Stream并行迭代效果:
分析,对于基本类型:
以上两个测试说明,对于基本类型的简单迭代,Stream串行迭代性能更差,但多核情况下Stream迭代时性能较好。
实验二 对象迭代
再来看对象的迭代效果。
测试内容:找出字符串列表中最小的元素(自然顺序),对比for循环外部迭代和Stream API内部迭代性能。
测试程序代码:
/** * java -server -Xms10G -Xmx10G -XX:+PrintGCDetails * -XX:+UseConcMarkSweepGC -XX:CompileThreshold=1000 lee/StringTest * taskset -c 0-[0,1,3,7] java ... * @author CarpenterLee */ public class StringTest { public static void main(String[] args) { new StringTest().doTest(); } public void doTest(){ warmUp(); int[] lengths = { 10000, 100000, 1000000, 10000000, 20000000, 40000000 }; for(int length : lengths){ System.out.println(String.format("---List length: %d---", length)); ArrayList list = randomStringList(length); int times = 4; String min1 = "1"; String min2 = "2"; String min3 = "3"; long startTime; startTime = System.nanoTime(); for(int i=0; i list = randomStringList(10); for(int i=0; i<20000; i++){ minStringForLoop(list); minStringStream(list); minStringParallelStream(list); } } private String minStringForLoop(ArrayList list){ String minStr = null; boolean first = true; for(String str : list){ if(first){ first = false; minStr = str; } if(minStr.compareTo(str)>0){ minStr = str; } } return minStr; } private String minStringStream(ArrayList list){ return list.stream().min(String::compareTo).get(); } private String minStringParallelStream(ArrayList list){ return list.stream().parallel().min(String::compareTo).get(); } private ArrayList randomStringList(int listLength){ ArrayList list = new ArrayList<>(listLength); Random rand = new Random(); int strLength = 10; StringBuilder buf = new StringBuilder(strLength); for(int i=0; i
测试结果如下图:
结果分析如下:
再来单独考察Stream并行迭代效果:
分析,对于对象类型:
以上两个测试说明,对于对象类型的简单迭代,Stream串行迭代性能更差,但多核情况下Stream迭代时性能较好。
实验三 复杂对象归约
从实验一、二的结果来看,Stream串行执行的效果都比外部迭代差(很多),是不是说明Stream真的不行了?先别下结论,我们再来考察一下更复杂的操作。
测试内容:给定订单列表,统计每个用户的总交易额。对比使用外部迭代手动实现和Stream API之间的性能。
我们将订单简化为
测试程序代码:
/** * java -server -Xms10G -Xmx10G -XX:+PrintGCDetails * -XX:+UseConcMarkSweepGC -XX:CompileThreshold=1000 lee/ReductionTest * taskset -c 0-[0,1,3,7] java ... * @author CarpenterLee */ public class ReductionTest { public static void main(String[] args) { new ReductionTest().doTest(); } public void doTest(){ warmUp(); int[] lengths = { 10000, 100000, 1000000, 10000000, 20000000, 40000000 }; for(int length : lengths){ System.out.println(String.format("---orders length: %d---", length)); List orders = Order.genOrders(length); int times = 4; Map map1 = null; Map map2 = null; Map map3 = null; long startTime; startTime = System.nanoTime(); for(int i=0; i orders = Order.genOrders(10); for(int i=0; i<20000; i++){ sumOrderForLoop(orders); sumOrderStream(orders); sumOrderParallelStream(orders); } } private Map sumOrderForLoop(List orders){ Map map = new HashMap<>(); for(Order od : orders){ String userName = od.getUserName(); Double v; if((v=map.get(userName)) != null){ map.put(userName, v+od.getPrice()); }else{ map.put(userName, od.getPrice()); } } return map; } private Map sumOrderStream(List orders){ return orders.stream().collect( Collectors.groupingBy(Order::getUserName, Collectors.summingDouble(Order::getPrice))); } private Map sumOrderParallelStream(List orders){ return orders.parallelStream().collect( Collectors.groupingBy(Order::getUserName, Collectors.summingDouble(Order::getPrice))); } } class Order{ private String userName; private double price; private long timestamp; public Order(String userName, double price, long timestamp) { this.userName = userName; this.price = price; this.timestamp = timestamp; } public String getUserName() { return userName; } public double getPrice() { return price; } public long getTimestamp() { return timestamp; } public static List genOrders(int listLength){ ArrayList list = new ArrayList<>(listLength); Random rand = new Random(); int users = listLength/200;// 200 orders per user users = users==0 ? listLength : users; ArrayList userNames = new ArrayList<>(users); for(int i=0; i
测试结果如下图:
分析,对于复杂的归约操作:
再来考察并行度对并行效果的影响,测试结果如下:
分析,对于复杂的归约操作:
以上两个实验说明,对于复杂的归约操作,Stream串行归约效果好于手动归约,在多核情况下,并行归约效果更佳。我们有理由相信,对于其他复杂的操作,Stream API也能表现出相似的性能表现。
结论
上述三个实验的结果可以总结如下:
所以,如果出于性能考虑,1. 对于简单操作推荐使用外部迭代手动实现,2. 对于复杂操作,推荐使用Stream API, 3. 在多核情况下,推荐使用并行Stream API来发挥多核优势,4.单核情况下不建议使用并行Stream API。
如果出于代码简洁性考虑,使用Stream API能够写出更短的代码。即使是从性能方面说,尽可能的使用Stream API也另外一个优势,那就是只要Java Stream类库做了升级优化,代码不用做任何修改就能享受到升级带来的好处。