深入理解Spark 2.1 Core (二):DAG调度器的原理与源码分析

上一篇《深入理解Spark 2.0 (一):RDD实现及源码分析 》的5.2 Spark任务调度器我们省略过去了,这篇我们就来讲讲Spark的调度器。

概述

上一篇《深入理解Spark(一):RDD实现及源码分析 》提到:

定义RDD之后,程序员就可以在动作(注:即action操作)中使用RDD了。动作是向应用程序返回值,或向存储系统导出数据的那些操作,例如,count(返回RDD中的元素个数),collect(返回元素本身),save(将RDD输出到存储系统)。在Spark中,只有在动作第一次使用RDD时,才会计算RDD(即延迟计算)。这样在构建RDD的时候,运行时通过管道的方式传输多个转换。

一次action操作会触发RDD的延迟计算,我们把这样的一次计算称作一个Job。我们还提到了窄依赖和宽依赖的概念:

窄依赖指的是:每个parent RDD 的 partition 最多被 child RDD的一个partition使用
宽依赖指的是:每个parent RDD 的 partition 被多个 child RDD的partition使用

窄依赖每个child RDD 的partition的生成操作都是可以并行的,而宽依赖则需要所有的parent partition shuffle结果得到后再进行。

由于在RDD的一系类转换中,若其中一些连续的转换都是窄依赖,那么它们是可以并行的,而有宽依赖则不行。所有,Spark将宽依赖为划分界限,将Job换分为多个Stage。而一个Stage里面的转换任务,我们可以把它抽象成TaskSet。一个TaskSet中有很多个Task,它们的转换操作都是相同的,不同只是操作的对象是对数据集中的不同子数据集。

接下来,Spark就可以提交这些任务了。但是,如何对这些任务进行调度和资源分配呢?如何通知worker去执行这些任务呢?接下来,我们会一一讲解。

深入理解Spark 2.1 Core (二):DAG调度器的原理与源码分析_第1张图片
这里写图片描述

根据以上两个阶段,我们会来详细介绍两个Scheduler,一个是DAGScheduler,另外一个是TaskScheduler。

我们先来看一来在SparkContext中是如何创建它们的:

  val (sched, ts) = SparkContext.createTaskScheduler(this, master, deployMode)
    _schedulerBackend = sched
    _taskScheduler = ts
    _dagScheduler = new DAGScheduler(this)  

可以看到,我们是先用函数createTaskScheduler创建了taskScheduler,再new了一个DAGScheduler。这个顺序可以改变吗?答案是否定的,我们看下DAGScheduler类就知道了:

class DAGScheduler(
    private[scheduler] val sc: SparkContext,
    private[scheduler] val taskScheduler: TaskScheduler,
    listenerBus: LiveListenerBus,
    mapOutputTracker: MapOutputTrackerMaster,
    blockManagerMaster: BlockManagerMaster,
    env: SparkEnv,
    clock: Clock = new SystemClock())
  extends Logging {

  def this(sc: SparkContext, taskScheduler: TaskScheduler) = {
    this(
      sc,
      taskScheduler,
      sc.listenerBus,
      sc.env.mapOutputTracker.asInstanceOf[MapOutputTrackerMaster],
      sc.env.blockManager.master,
      sc.env)
  }

  def this(sc: SparkContext) = this(sc, sc.taskScheduler)

***

  }

SparkContext中创建的TaskScheduler,会传入DAGScheduler赋值给它的成员变量,再DAG阶段结束后,使用它进行下一步对任务调度等的操作。

提交Job

调用栈如下:

  • rdd.count
  • SparkContext.runJob
    • DAGScheduler.runJob
      • DAGScheduler.submitJob
        • DAGSchedulerEventProcessLoop.doOnReceive
          • DAGScheduler.handleJobSubmitted

接下来,我们来逐个深入:

rdd.count

RDD的一些action操作都会触发SparkContext的runJob函数,如count()

 def count(): Long = sc.runJob(this, Utils.getIteratorSize _).sum

SparkContext.runJob

SparkContext的runJob会触发 DAGScheduler的runJob:

def runJob[T, U: ClassTag](
      rdd: RDD[T],
      func: (TaskContext, Iterator[T]) => U,
      partitions: Seq[Int],
      resultHandler: (Int, U) => Unit): Unit = {
    if (stopped.get()) {
      throw new IllegalStateException("SparkContext has been shutdown")
    }
    val callSite = getCallSite
    val cleanedFunc = clean(func)
    logInfo("Starting job: " + callSite.shortForm)
    if (conf.getBoolean("spark.logLineage", false)) {
      logInfo("RDD's recursive dependencies:\n" + rdd.toDebugString)
    }
    dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, resultHandler, localProperties.get)
    progressBar.foreach(_.finishAll())
    rdd.doCheckpoint()
  }

这里的rdd.doCheckpoint()并不是对自己Checkpoint,而是递归的回溯parent rdd 检查checkpointData是否被定义了,若定义了就将该rdd Checkpoint:

 private[spark] def doCheckpoint(): Unit = {
    RDDOperationScope.withScope(sc, "checkpoint", allowNesting = false, ignoreParent = true) {
      if (!doCheckpointCalled) {
        doCheckpointCalled = true
        if (checkpointData.isDefined) {
          if (checkpointAllMarkedAncestors) {
           //若想要把checkpointData定义过的RDD的parents也进行checkpoint的话,
           //那么我们需要先对parents checkpoint。
           //这是因为,如果RDD把自己checkpoint了,
           //那么它就将lineage中它的parents给切除了。
            dependencies.foreach(_.rdd.doCheckpoint())
          }
          checkpointData.get.checkpoint()
        } else {
          dependencies.foreach(_.rdd.doCheckpoint())
        }
      }
    }
  }

具体的checkpoint实现可见上一篇博文。

DAGScheduler.runJob

DAGScheduler的runJob会触发DAGScheduler的submitJob:

/**
   * 参数介绍:
   * @param rdd: 执行任务的目标TDD
   * @param func: 在RDD的分区上所执行的函数
   * @param partitions: 需要执行的分区集合;有些job并不会对RDD的所有分区都进行计算的,比如说first()
   * @param callSite:用户程序的调用点
   * @param resultHandler:回调结果
   * @param properties:关于这个job的调度器特征,比如说公平调度的pool名字,这个会在后续讲到 
   */
  def runJob[T, U](
      rdd: RDD[T],
      func: (TaskContext, Iterator[T]) => U,
      partitions: Seq[Int],
      callSite: CallSite,
      resultHandler: (Int, U) => Unit,
      properties: Properties): Unit = {
    val start = System.nanoTime
    val waiter = submitJob(rdd, func, partitions, callSite, resultHandler, properties)
   
     ***
      waiter.completionFuture.value.get match {
      case scala.util.Success(_) =>
        logInfo("Job %d finished: %s, took %f s".format
          (waiter.jobId, callSite.shortForm, (System.nanoTime - start) / 1e9))
      case scala.util.Failure(exception) =>
        logInfo("Job %d failed: %s, took %f s".format
          (waiter.jobId, callSite.shortForm, (System.nanoTime - start) / 1e9))
        val callerStackTrace = Thread.currentThread().getStackTrace.tail
        exception.setStackTrace(exception.getStackTrace ++ callerStackTrace)
        throw exception
    }
  }

DAGScheduler.submitJob

我们接下来看看submitJob里面做了什么:

  def submitJob[T, U](
      rdd: RDD[T],
      func: (TaskContext, Iterator[T]) => U,
      partitions: Seq[Int],
      callSite: CallSite,
      resultHandler: (Int, U) => Unit,
      properties: Properties): JobWaiter[U] = {
    // 确认没在不存在的partition上执行任务
    val maxPartitions = rdd.partitions.length
    partitions.find(p => p >= maxPartitions || p < 0).foreach { p =>
      throw new IllegalArgumentException(
        "Attempting to access a non-existent partition: " + p + ". " +
          "Total number of partitions: " + maxPartitions)
    }
    //递增得到jobId
    val jobId = nextJobId.getAndIncrement()
    if (partitions.size == 0) {
      //若Job没对任何一个partition执行任务,
      //则立即返回
      return new JobWaiter[U](this, jobId, 0, resultHandler)
    }

    assert(partitions.size > 0)
    val func2 = func.asInstanceOf[(TaskContext, Iterator[_]) => _]
    val waiter = new JobWaiter(this, jobId, partitions.size, resultHandler)
    eventProcessLoop.post(JobSubmitted(
      jobId, rdd, func2, partitions.toArray, callSite, waiter,
      SerializationUtils.clone(properties)))
    waiter
  }

DAGSchedulerEventProcessLoop.doOnReceive

eventProcessLoop是一个DAGSchedulerEventProcessLoop类对象,即一个DAG调度事件处理的监听。eventProcessLoop中调用doOnReceive来进行监听

private def doOnReceive(event: DAGSchedulerEvent): Unit = event match {
    //当事件为JobSubmitted时,
    //会调用DAGScheduler.handleJobSubmitted
    case JobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties) =>
      dagScheduler.handleJobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties)
***
}

DAGScheduler.handleJobSubmitted

自此Job的提交就完成了:

  private[scheduler] def handleJobSubmitted(jobId: Int,
      finalRDD: RDD[_],
      func: (TaskContext, Iterator[_]) => _,
      partitions: Array[Int],
      callSite: CallSite,
      listener: JobListener,
      properties: Properties) {
    var finalStage: ResultStage = null
    try {
      finalStage = newResultStage(finalRDD, func, partitions, jobId, callSite)
    } catch {
      case e: Exception =>
        logWarning("Creating new stage failed due to exception - job: " + jobId, e)
        listener.jobFailed(e)
        return
    }

    val job = new ActiveJob(jobId, finalStage, callSite, listener, properties)
    clearCacheLocs()
    logInfo("Got job %s (%s) with %d output partitions".format(
      job.jobId, callSite.shortForm, partitions.length))
    logInfo("Final stage: " + finalStage + " (" + finalStage.name + ")")
    logInfo("Parents of final stage: " + finalStage.parents)
    logInfo("Missing parents: " + getMissingParentStages(finalStage))

    val jobSubmissionTime = clock.getTimeMillis()
    jobIdToActiveJob(jobId) = job
    activeJobs += job
    finalStage.setActiveJob(job)
    val stageIds = jobIdToStageIds(jobId).toArray
    val stageInfos = stageIds.flatMap(id => stageIdToStage.get(id).map(_.latestInfo))
    listenerBus.post(
      SparkListenerJobStart(job.jobId, jobSubmissionTime, stageInfos, properties))
    submitStage(finalStage)

    submitWaitingStages()
  }

接下来我们来看看handleJobSubmitted中的newResultStage,一个非常有趣的划分Stage过程。

划分Stage

深入理解Spark 2.1 Core (二):DAG调度器的原理与源码分析_第2张图片
这里写图片描述

如我们之前提到的:Spark将宽依赖为划分界限,将Job换分为多个Stage。调用栈为:

  • DAGScheduler.newResultStage
  • DAGScheduler.getParentStagesAndId
    - DAGScheduler.getParentStages
    - DAGScheduler.getShuffleMapStage
    - DAGScheduler.getAncestorShuffleDependencies
    - DAGScheduler.newOrUsedShuffleStage
    - DAGScheduler.newShuffleMapStage

接下来,我们来逐个深入:

DAGScheduler.newResultStage

Spark的Stage调用是从最后一个RDD所在的Stage,ResultStage开始划分的,这里即为G所在的Stage。但是在生成这个Stage之前会生成它的parent Stage,就这样递归的把parent Stage都先生成了。

  private def newResultStage(
      rdd: RDD[_],
      func: (TaskContext, Iterator[_]) => _,
      partitions: Array[Int],
      jobId: Int,
      callSite: CallSite): ResultStage = {
    val (parentStages: List[Stage], id: Int) = getParentStagesAndId(rdd, jobId)
    val stage = new ResultStage(id, rdd, func, partitions, parentStages, jobId, callSite)
    stageIdToStage(id) = stage
    updateJobIdStageIdMaps(jobId, stage)
    stage
  }

DAGScheduler.getParentStagesAndId

getParentStagesAndId中得到了ParentStages以及其StageId:

  private def getParentStagesAndId(rdd: RDD[_], firstJobId: Int): (List[Stage], Int) = {
    val parentStages = getParentStages(rdd, firstJobId)
    val id = nextStageId.getAndIncrement()
    (parentStages, id)
  }

DAGScheduler.getParentStages

我们再来深入看看getParentStages做了什么:

 private def getParentStages(rdd: RDD[_], firstJobId: Int): List[Stage] = {
    //将存储ParentStages
    val parents = new HashSet[Stage]
    //存储已将访问过了的RDD
    val visited = new HashSet[RDD[_]]
    // 存储需要被处理的RDD
    val waitingForVisit = new Stack[RDD[_]]
    def visit(r: RDD[_]) {
      if (!visited(r)) {
        //加入访问集合
        visited += r
        //遍历该RDD所有的依赖
        for (dep <- r.dependencies) {
          dep match {
            //若是宽依赖则生成新的Stage
            case shufDep: ShuffleDependency[_, _, _] =>
              parents += getShuffleMapStage(shufDep, firstJobId)
            //若是窄依赖则加入Stack,等待处理
            case _ =>
              waitingForVisit.push(dep.rdd)
          }
        }
      }
    }
    //在Stack中加入最后一个RDD
    waitingForVisit.push(rdd)
    //广度优先遍历
    while (waitingForVisit.nonEmpty) {
      visit(waitingForVisit.pop())
    }
    //返回ParentStages List
    parents.toList
  }

其实getParentStages使用的就是广度优先遍历的算法,若知道这点也容易理解了。虽然现在Stage并没有生成,但是我们可以看到划分策略是:广度遍历方式的划分parent RDD 的Stage。

若parent RDD 和 child RDD 为窄依赖,则将parent RDD 纳入 child RDD 所在的Stage中。如图,B被纳入了Stage3中。

若parent RDD 和 child RDD 为宽依赖,则parent RDD将纳入一新的Stage中。如图,F被纳入了Stage2中。

DAGScheduler.getShuffleMapStage

下面我们来看下getShuffleMapStage是如何生成新的Stage的。
首先shuffleToMapStage中保存了关于Stage的HashMap

private[scheduler] val shuffleToMapStage = new HashMap[Int, ShuffleMapStage]

getShuffleMapStage会先去根据shuffleId去查找shuffleToMapStage

  private def getShuffleMapStage(
      shuffleDep: ShuffleDependency[_, _, _],
      firstJobId: Int): ShuffleMapStage = {
    shuffleToMapStage.get(shuffleDep.shuffleId) match {
      //若找到则直接返回
      case Some(stage) => stage
      case None =>
        // 检查这个Stage的Parent Stage是否生成
        // 若没有,则生成它们       
        getAncestorShuffleDependencies(shuffleDep.rdd).foreach { dep =>
          if (!shuffleToMapStage.contains(dep.shuffleId)) {
            shuffleToMapStage(dep.shuffleId) = newOrUsedShuffleStage(dep, firstJobId)
          }
        }
        // 生成新的Stage
        val stage = newOrUsedShuffleStage(shuffleDep, firstJobId)
        //将新的Stage 加入到 HashMap
        shuffleToMapStage(shuffleDep.shuffleId) = stage
        //返回新的Stage
        stage
    }
  }

可以发现这部分的代码和上述的newResultStage部分很像,所以可以看成一种递归的方法。

DAGScheduler.getAncestorShuffleDependencies

我们再来看下getAncestorShuffleDependencies,可想而知,它应该会和newResultStage中的getParentStages会非常类似:

  private def getAncestorShuffleDependencies(rdd: RDD[_]): Stack[ShuffleDependency[_, _, _]] = {
    val parents = new Stack[ShuffleDependency[_, _, _]]
    val visited = new HashSet[RDD[_]]
    val waitingForVisit = new Stack[RDD[_]]
    def visit(r: RDD[_]) {
      if (!visited(r)) {
        visited += r
        for (dep <- r.dependencies) {
          dep match {
            case shufDep: ShuffleDependency[_, _, _] =>
              if (!shuffleToMapStage.contains(shufDep.shuffleId)) {
                parents.push(shufDep)
              }
            case _ =>
          }
          waitingForVisit.push(dep.rdd)
        }
      }
    }

    waitingForVisit.push(rdd)
    while (waitingForVisit.nonEmpty) {
      visit(waitingForVisit.pop())
    }
    parents
  }

可以看到的确和newResultStage中的getParentStages会非常类似,不同的是这里会先判断shuffleToMapStage是否存在这个Stage,不存在的话会push到parents这个Stack,最会返回给上述的getShuffleMapStage,调用newOrUsedShuffleStage生成新的Stage。

DAGScheduler.newOrUsedShuffleStage

那现在就来看newOrUsedShuffleStage是如何生成新的Stage的。
首先ShuffleMapTask的计算结果(其实是计算结果数据所在的位置、大小等元数据信息)都会传给Driver的mapOutputTracker。所以需要先判断Stage是否已经被计算过:

  private def newOrUsedShuffleStage(
      shuffleDep: ShuffleDependency[_, _, _],
      firstJobId: Int): ShuffleMapStage = {
    val rdd = shuffleDep.rdd
    val numTasks = rdd.partitions.length
    //生成新的Stage
    val stage = newShuffleMapStage(rdd, numTasks, shuffleDep, firstJobId, rdd.creationSite)
    //判断Stage是否已经被计算过
    //若计算过,则把结果复制到新的stage
    if (mapOutputTracker.containsShuffle(shuffleDep.shuffleId)) {
      val serLocs = mapOutputTracker.getSerializedMapOutputStatuses(shuffleDep.shuffleId)
      val locs = MapOutputTracker.deserializeMapStatuses(serLocs)
      (0 until locs.length).foreach { i =>
        if (locs(i) ne null) {
          stage.addOutputLoc(i, locs(i))
        }
      }
    } else {
      logInfo("Registering RDD " + rdd.id + " (" + rdd.getCreationSite + ")")
      //如果没计算过,就在注册mapOutputTracker Stage
      //为存储元数据占位
      mapOutputTracker.registerShuffle(shuffleDep.shuffleId, rdd.partitions.length)
    }
    stage
  }

DAGScheduler.newShuffleMapStage

递归就发生在newShuffleMapStage,它的实现和最一开始的newResultStage类似,也是先getParentStagesAndId,然后生成一个ShuffleMapStage:

  private def newShuffleMapStage(
      rdd: RDD[_],
      numTasks: Int,
      shuffleDep: ShuffleDependency[_, _, _],
      firstJobId: Int,
      callSite: CallSite): ShuffleMapStage = {
    val (parentStages: List[Stage], id: Int) = getParentStagesAndId(rdd, firstJobId)
    val stage: ShuffleMapStage = new ShuffleMapStage(id, rdd, numTasks, parentStages,
      firstJobId, callSite, shuffleDep)

    stageIdToStage(id) = stage
    updateJobIdStageIdMaps(firstJobId, stage)
    stage
  }

回顾

到此,Stage划分过程就结束了。我们在根据一开始的图,举例回顾下:


深入理解Spark 2.1 Core (二):DAG调度器的原理与源码分析_第3张图片
这里写图片描述
  • 首先,我们想 newResultStage RDD_G所在的Stage3
  • 但在new Stage之前会调用getParentStagesAndId
  • getParentStagesAndId中又会调用getParentStages,来广度优先的遍历RDD_G所依赖的RDD。如果是窄依赖,就纳入G所在的Stage3,如RDD_B就纳入了Stage3
  • 若过是宽依赖,我们这里以RDD_F为例(与RDD_A处理过程相同)。我们就会调用getShuffleMapStage,来判断RDD_F所在的Stage2是否已经生成了,如果生成了就直接返回。
  • 若还没生成,我们先调用getAncestorShuffleDependenciesgetAncestorShuffleDependencies类似于getParentStages,也是用广度优先的遍历RDD_F所依赖的RDD。如果是窄依赖,如RDD_CRDD_DRDD_E,都被纳入了F所在的Stage2。但是假设RDD_E有个parent RDD ``RDD_HRDD_HRDD_E之间是宽依赖,那么该怎么办呢?我们会先判断RDD_H所在的Stage是否已经生成。若还没生成,我们把它put到一个parents Stack 中,最后返回。
  • 对于那些返回的还没生成的Stage我们会调用newOrUsedShuffleStage
  • newOrUsedShuffleStage会调用newShuffleMapStage,来生成新的Stage。而newShuffleMapStage的实现类似于newResultStage。这样我们就可以递归下去,使得每个Stage所依赖的Stage都已经生成了,再来生成这个的Stage。如这里,会将RDD_H所在的Stage生成了,然后在再生成Stage2。
  • newOrUsedShuffleStage生成新的Stage后,会判断Stage是否被计算过。若已经被计算过,就从mapOutPutTracker中复制计算结果。若没计算过,则向mapOutPutTracker注册占位。
  • 最后,回到newResultStage中,new ResultStage,这里即生成了Stage3。至此,Stage划分过程就结束了。

生成任务

调用栈如下:

  • DAGScheduler.handleJobSubmitted
  • DAGScheduler.submitStage
    • DAGScheduler.getMissingParentStages
    • DAGScheduler.submitMissingTasks

DAGScheduler.handleJobSubmitted

我们再回过头来看“提交Job"的最后一步handleJobSubmitted:

  private[scheduler] def handleJobSubmitted(jobId: Int,
      finalRDD: RDD[_],
      func: (TaskContext, Iterator[_]) => _,
      partitions: Array[Int],
      callSite: CallSite,
      listener: JobListener,
      properties: Properties) {
    var finalStage: ResultStage = null
    try {
      finalStage = newResultStage(finalRDD, func, partitions, jobId, callSite)
    } catch {
      case e: Exception =>
        logWarning("Creating new stage failed due to exception - job: " + jobId, e)
        listener.jobFailed(e)
        return
    }
    ***
  }

"划分Stage"中我们已经深入的讲解了finalStage的生成:

finalStage = newResultStage(finalRDD, func, partitions, jobId, callSite)

接下来,我们继续往下看handleJobSubmitted的代码:

    //生成新的job
    val job = new ActiveJob(jobId, finalStage, callSite, listener, properties)
    clearCacheLocs()
    logInfo("Got job %s (%s) with %d output partitions".format(
      job.jobId, callSite.shortForm, partitions.length))
    logInfo("Final stage: " + finalStage + " (" + finalStage.name + ")")
    logInfo("Parents of final stage: " + finalStage.parents)
    logInfo("Missing parents: " + getMissingParentStages(finalStage))
    //得到job提交的时间
    val jobSubmissionTime = clock.getTimeMillis()
    //得到job id
    jobIdToActiveJob(jobId) = job
    //添加到activeJobs HashSet
    activeJobs += job
    //将finalStage甚至ActiveJob为该job
    finalStage.setActiveJob(job)
    //得到stage 的id 信息
    val stageIds = jobIdToStageIds(jobId).toArray
    val stageInfos = stageIds.flatMap(id => stageIdToStage.get(id).map(_.latestInfo))
    //监听
    listenerBus.post(
      SparkListenerJobStart(job.jobId, jobSubmissionTime, stageInfos, properties))
    //提交
    submitStage(finalStage)
    //等待
    submitWaitingStages()

DAGScheduler.submitStage

接下来我们来看Stage是如何提交的。我们需要找到哪些parent Stage缺失,然后我们先运行生成这些Stage。这是一个深度优先遍历的过程:

  private def submitStage(stage: Stage) {
    val jobId = activeJobForStage(stage)
    if (jobId.isDefined) {
      logDebug("submitStage(" + stage + ")")
      if (!waitingStages(stage) && !runningStages(stage) && !failedStages(stage)) {
        //得到缺失的Parent Stage
        val missing = getMissingParentStages(stage).sortBy(_.id)
        logDebug("missing: " + missing)
        if (missing.isEmpty) {
          logInfo("Submitting " + stage + " (" + stage.rdd + "), which has no missing parents")
          //如果没有缺失的Parent Stage,
          //那么代表着该Stage可以运行了
          //submitMissingTasks会完成DAGScheduler最后的工作,
          //向TaskScheduler 提交 Task
          submitMissingTasks(stage, jobId.get)
        } else {
        //深度优先遍历
          for (parent <- missing) {
            submitStage(parent)
          }
          waitingStages += stage
        }
      }
    } else {
      abortStage(stage, "No active job for stage " + stage.id, None)
    }
  }

DAGScheduler.getMissingParentStages

getMissingParentStages类似于getParentStages,也是使用广度优先遍历:

  private def getMissingParentStages(stage: Stage): List[Stage] = {
    val missing = new HashSet[Stage]
    val visited = new HashSet[RDD[_]]
    val waitingForVisit = new Stack[RDD[_]]
    def visit(rdd: RDD[_]) {
      if (!visited(rdd)) {
        visited += rdd
        val rddHasUncachedPartitions = getCacheLocs(rdd).contains(Nil)
        if (rddHasUncachedPartitions) {
          for (dep <- rdd.dependencies) {
            dep match {
             //若是宽依赖 并且 不可用 ,
             //则加入 missing HashSet
              case shufDep: ShuffleDependency[_, _, _] =>
                val mapStage = getShuffleMapStage(shufDep, stage.firstJobId)
                if (!mapStage.isAvailable) {
                  missing += mapStage
                }
                //若是窄依赖
                //则加入等待访问的 HashSet
              case narrowDep: NarrowDependency[_] =>
                waitingForVisit.push(narrowDep.rdd)
            }
          }
        }
      }
    }
    waitingForVisit.push(stage.rdd)
    while (waitingForVisit.nonEmpty) {
      visit(waitingForVisit.pop())
    }
    missing.toList
  }

DAGScheduler.submitMissingTasks

最后,我们来看下DAGScheduler最后的工作,提交Task:

private def submitMissingTasks(stage: Stage, jobId: Int) {
    logDebug("submitMissingTasks(" + stage + ")")
    // pendingPartitions 是 HashSet[Int]
    //存储待处理的Task
    stage.pendingPartitions.clear()

    // 找出还未就算的Partition
    val partitionsToCompute: Seq[Int] = stage.findMissingPartitions()

    //从一个ActiveJob中得到关于这个Stage的
    //调度池,job组描述等信息
    val properties = jobIdToActiveJob(jobId).properties
    // runningStages 是 HashSet[Stage]
    //将当前Stage加入到运行中Stage集合
    runningStages += stage
  
    stage match {
      case s: ShuffleMapStage =>
        outputCommitCoordinator.stageStart(stage = s.id, maxPartitionId = s.numPartitions - 1)
      case s: ResultStage =>
        outputCommitCoordinator.stageStart(
          stage = s.id, maxPartitionId = s.rdd.partitions.length - 1)
    }
    val taskIdToLocations: Map[Int, Seq[TaskLocation]] = try {
      stage match {
        case s: ShuffleMapStage =>
          partitionsToCompute.map { id => (id, getPreferredLocs(stage.rdd, id))}.toMap
        case s: ResultStage =>
          partitionsToCompute.map { id =>
            val p = s.partitions(id)
            (id, getPreferredLocs(stage.rdd, p))
          }.toMap
      }
    } catch {
      case NonFatal(e) =>
        stage.makeNewStageAttempt(partitionsToCompute.size)
        listenerBus.post(SparkListenerStageSubmitted(stage.latestInfo, properties))
        abortStage(stage, s"Task creation failed: $e\n${Utils.exceptionString(e)}", Some(e))
        runningStages -= stage
        return
    }

    stage.makeNewStageAttempt(partitionsToCompute.size, taskIdToLocations.values.toSeq)
//向listenerBus发送SparkListenerStageSubmitted事件    
listenerBus.post(SparkListenerStageSubmitted(stage.latestInfo, properties))

    var taskBinary: Broadcast[Array[Byte]] = null
    try {
    //对于最后一个Stage的Task,
    //序列化并广播(rdd, func)。
    //若是其他的Stage的Task,
    //序列化并广播(rdd, shuffleDep)
      val taskBinaryBytes: Array[Byte] = stage match {
        case stage: ShuffleMapStage =>
          JavaUtils.bufferToArray(
            closureSerializer.serialize((stage.rdd, stage.shuffleDep): AnyRef))
        case stage: ResultStage =>
          JavaUtils.bufferToArray(closureSerializer.serialize((stage.rdd, stage.func): AnyRef))
      }

      taskBinary = sc.broadcast(taskBinaryBytes)
    } catch {
      //若序列化失败,停止这个stage
      case e: NotSerializableException =>
        abortStage(stage, "Task not serializable: " + e.toString, Some(e))
        runningStages -= stage

        // 停止执行
        return
      case NonFatal(e) =>
        abortStage(stage, s"Task serialization failed: $e\n${Utils.exceptionString(e)}", Some(e))
        runningStages -= stage
        return
    }

    val tasks: Seq[Task[_]] = try {
    //对于最后一个Stage的Task,
    //则创建ResultTask。
    //若是其他的Stage的Task,
    //则创建ShuffleMapTask。
      stage match {
        case stage: ShuffleMapStage =>
          partitionsToCompute.map { id =>
            val locs = taskIdToLocations(id)
            val part = stage.rdd.partitions(id)
            new ShuffleMapTask(stage.id, stage.latestInfo.attemptId,
              taskBinary, part, locs, stage.latestInfo.taskMetrics, properties, Option(jobId),
              Option(sc.applicationId), sc.applicationAttemptId)
          }

        case stage: ResultStage =>
          partitionsToCompute.map { id =>
            val p: Int = stage.partitions(id)
            val part = stage.rdd.partitions(p)
            val locs = taskIdToLocations(id)
            new ResultTask(stage.id, stage.latestInfo.attemptId,
              taskBinary, part, locs, id, properties, stage.latestInfo.taskMetrics,
              Option(jobId), Option(sc.applicationId), sc.applicationAttemptId)
          }
      }
    } catch {
      case NonFatal(e) =>
        abortStage(stage, s"Task creation failed: $e\n${Utils.exceptionString(e)}", Some(e))
        runningStages -= stage
        return
    }

    if (tasks.size > 0) {
      logInfo("Submitting " + tasks.size + " missing tasks from " + stage + " (" + stage.rdd + ")")
      stage.pendingPartitions ++= tasks.map(_.partitionId)
      logDebug("New pending partitions: " + stage.pendingPartitions)
      //创建TaskSet并提交
      taskScheduler.submitTasks(new TaskSet(
        tasks.toArray, stage.id, stage.latestInfo.attemptId, jobId, properties))
      stage.latestInfo.submissionTime = Some(clock.getTimeMillis())
    } else {
      markStageAsFinished(stage, None)

      val debugString = stage match {
        case stage: ShuffleMapStage =>
          s"Stage ${stage} is actually done; " +
            s"(available: ${stage.isAvailable}," +
            s"available outputs: ${stage.numAvailableOutputs}," +
            s"partitions: ${stage.numPartitions})"
        case stage : ResultStage =>
          s"Stage ${stage} is actually done; (partitions: ${stage.numPartitions})"
      }
      logDebug(debugString)

      submitWaitingChildStages(stage)
    }
  }
深入理解Spark 2.1 Core (二):DAG调度器的原理与源码分析_第4张图片
这里写图片描述

TaskSet保存了Stage包含的一组完全相同的Task,每个Task的处理逻辑完全相同,不同的是处理的数据,每个Task负责一个Partition。

至此,DAGScheduler就完成了它的任务了。接下来一篇博文,我们会从上述代码中的:

      taskScheduler.submitTasks(new TaskSet(
        tasks.toArray, stage.id, stage.latestInfo.attemptId, jobId, properties))

开始讲起,深入理解TaskScheduler的工作过程。

你可能感兴趣的:(深入理解Spark 2.1 Core (二):DAG调度器的原理与源码分析)