弗洛伊德(Floyd)算法求图的最短路径

弗洛伊德基本思想

弗洛伊德算法作为求最短路径的经典算法,其算法实现相比迪杰斯特拉等算法是非常优雅的,可读性和理解都非常好。

基本思想:
弗洛伊德算法定义了两个二维矩阵:

  1. 矩阵D记录顶点间的最小路径
    例如D[0][3]= 10,说明顶点0 到 3 的最短路径为10;
  2. 矩阵P记录顶点间最小路径中的中转点
    例如P[0][3]= 1 说明,0 到 3的最短路径轨迹为:0 -> 1 -> 3。

它通过3重循环,k为中转点,v为起点,w为终点,循环比较D[v][w] 和 D[v][k] + D[k][w] 最小值,如果D[v][k] + D[k][w] 为更小值,则把D[v][k] + D[k][w] 覆盖保存在D[v][w]中。

概念是比较难理解的,我们来看图:

弗洛伊德(Floyd)算法求图的最短路径_第1张图片

顶点名称和下标的对应
A B C D E F G
0 1 2 3 4 5 6

第2步:
以A为中间点,原D矩阵中,D[B][G]的值为INF,即不存在B->G的最小路径,但是通过A为中间点,D[B][A] + D[A][G] = 12 + 14 = 26 小于 D[B][G] = INF, 所以D[B][A] + D[A][G] 为 B -> G的最小值,因此覆盖D[B][G] 为 26。

第3步:
以B为中间点,第2步后的D矩阵中,D[A][C]的值为INF, 但是通过B,D[A][B] + D[B][C] = 12 + 10 = 22 小于 D[A][C] = INF,所以D[A][B] + D[B][C] 为 A->C的最小路径,覆盖D[A][C]的值为22, 以此类推。

第4步….

代码实现

我们就对上面的图进行弗洛伊德算法求最短路径,并且我们求A到D的最小路径,即v = 0, w = 3;

结构定义

typedef struct struct_graph{
    char vexs[MAXN];
    int vexnum;//顶点数 
    int edgnum;//边数 
    int matirx[MAXN][MAXN];//邻接矩阵 
} Graph;

弗洛伊德算法

//这里是弗洛伊德算法的核心部分 
    //k为中间点 
    for(k = 0; k < G.vexnum; k++){
        //v为起点 
        for(v = 0 ; v < G.vexnum; v++){
            //w为终点 
            for(w =0; w < G.vexnum; w++){
                if(D[v][w] > (D[v][k] + D[k][w])){
                    D[v][w] = D[v][k] + D[k][w];//更新最小路径 
                    P[v][w] = P[v][k];//更新最小路径中间顶点 
                }
            }
        }
    }

求A 到 D的最短路径

    v = 0;
    w = 3;
    //03的最小路径
    printf("\n%d -> %d 的最小路径为:%d\n", v, w, D[v][w]);
    k = P[v][w];
    printf("path: %d", v);//打印起点
    while(k != w){
        printf("-> %d", k);//打印中间点
        k = P[k][w]; 
    }
    printf("-> %d\n", w);

完整代码

#include 
#include 

#define MAXN 10 
#define INF = 1000

typedef struct struct_graph{
    char vexs[MAXN];
    int vexnum;//顶点数 
    int edgnum;//边数 
    int matirx[MAXN][MAXN];//邻接矩阵 
} Graph;

int pathmatirx[MAXN][MAXN];//记录对应点的最小路径的前驱点,例如p(1,3) = 2 说明顶点1到顶点3的最小路径要经过2 
int shortPath[MAXN][MAXN];//记录顶点间的最小路径值

void short_path_floyd(Graph G, int P[MAXN][MAXN], int D[MAXN][MAXN]){
    int v, w, k;
    //初始化floyd算法的两个矩阵 
    for(v = 0; v < G.vexnum; v++){
        for(w = 0; w < G.vexnum; w++){
            D[v][w] = G.matirx[v][w];
            P[v][w] = w;
        }
    }

    //这里是弗洛伊德算法的核心部分 
    //k为中间点 
    for(k = 0; k < G.vexnum; k++){
        //v为起点 
        for(v = 0 ; v < G.vexnum; v++){
            //w为终点 
            for(w =0; w < G.vexnum; w++){
                if(D[v][w] > (D[v][k] + D[k][w])){
                    D[v][w] = D[v][k] + D[k][w];//更新最小路径 
                    P[v][w] = P[v][k];//更新最小路径中间顶点 
                }
            }
        }
    }

    printf("\n初始化的D矩阵\n");
    for(v = 0; v < G.vexnum; v++){
        for(w = 0; w < G.vexnum; w++){
            printf("%d ", D[v][w]);
        }
        printf("\n");
    }

    printf("\n初始化的P矩阵\n");
    for(v = 0; v < G.vexnum; v++){
        for(w = 0; w < G.vexnum; w++){
            printf("%d", P[v][w]);
        }
        printf("\n");
    }

    v = 0;
    w = 3;
    //求 0 到 3的最小路径
    printf("\n%d -> %d 的最小路径为:%d\n", v, w, D[v][w]);
    k = P[v][w];
    printf("path: %d", v);//打印起点
    while(k != w){
        printf("-> %d", k);//打印中间点
        k = P[k][w]; 
    }
    printf("-> %d\n", w);
}

int main(){
    int v, w;
    Graph G;
    printf("请输入顶点数:\n");
    scanf("%d", &G.vexnum);
    printf("请输入初始矩阵值:\n");
    for(v = 0; v < G.vexnum; v++){
        for(w = 0; w < G.vexnum; w++){
            scanf("%d", &G.matirx[v][w]);
        }
    }
    printf("\n输入的矩阵值:\n");
    for(v = 0; v < G.vexnum; v++){
        for(w = 0; w < G.vexnum; w++){
            printf("%d ", G.matirx[v][w]);
        }
        printf("\n");
    }
    short_path_floyd(G, pathmatirx, shortPath);
}

操作结果

初始化操作

弗洛伊德(Floyd)算法求图的最短路径_第2张图片

弗洛伊德算法后的D矩阵和P矩阵

弗洛伊德(Floyd)算法求图的最短路径_第3张图片

求得的最短路径

这里写图片描述

你可能感兴趣的:(算法,弗洛伊德算法,Floyd,最短路径,数据结构,算法与数据结构基础)