Redis的这八个问题,验证你是否精通

原文链接: https://mp.weixin.qq.com/s/UN5wf6MxyordbA0ocif4Xg

1、为什么使用Redis

  1. 性能
    如下图所示,我们在碰到需要执行耗时特别久,且结果不频繁变动的SQL,就特别适合将运行结果放入缓存。这样,后面的请求就去缓存中读取,使得请求能够迅速响应。
    Redis的这八个问题,验证你是否精通_第1张图片
  2. 并发
    如下图所示,在大并发的情况下,所有的请求直接访问数据库,数据库会出现连接异常。这个时候,就需要使用redis做一个缓冲操作,让请求先访问到redis,而不是直接访问数据库。
    Redis的这八个问题,验证你是否精通_第2张图片

2、使用Redis有什么缺点

  1. 缓存和数据库双写一致性问题
  2. 缓存雪崩问题
  3. 缓存击穿问题
  4. 缓存的并发竞争问题
    可以参考:《缓存雪崩、缓存穿透、缓存预热、缓存更新、缓存降级等问题!》

3、单线程的Redis为什么这么快

  1. 纯内存操作
  2. 单线程操作,避免了频繁的上下文切换
  3. 采用了非阻塞I/O多路复用机制
    可以参考:《为什么说Redis是单线程的?》

4、Redis的数据类型,以及每种数据类型的使用场景

  1. String
  2. hash
  3. list
  4. set
  5. sorted set
    可以参考:《Redis常见的5种不同的数据类型详解》

5、Redis的过期策略以及内存淘汰机制

redis采用的是定期删除+惰性删除策略。

  • 为什么不用定时删除策略?
    定时删除,用一个定时器来负责监视key,过期则自动删除。虽然内存及时释放,但是十分消耗CPU资源。在大并发请求下,CPU要将时间应用在处理请求,而不是删除key,因此没有采用这一策略.
  • 定期删除+惰性删除是如何工作的呢?
    定期删除,redis默认每个100ms检查,是否有过期的key,有过期key则删除。需要说明的是,redis不是每个100ms将所有的key检查一次,而是随机抽取进行检查(如果每隔100ms,全部key进行检查,redis岂不是卡死)。因此,如果只采用定期删除策略,会导致很多key到时间没有删除。
    于是,惰性删除派上用场。也就是说在你获取某个key的时候,redis会检查一下,这个key如果设置了过期时间那么是否过期了?如果过期了此时就会删除。

采用定期删除+惰性删除就没其他问题了么?

不是的,如果定期删除没删除key。然后你也没即时去请求key,也就是说惰性删除也没生效。这样,redis的内存会越来越高。那么就应该采用内存淘汰机制。

在redis.conf中有一行配置

maxmemory-policy volatile-lru

该配置就是配内存淘汰策略的

1)noeviction:当内存不足以容纳新写入数据时,新写入操作会报错。应该没人用吧。
2)allkeys-lru:当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的key。推荐使用,目前项目在用这种。
3)allkeys-random:当内存不足以容纳新写入数据时,在键空间中,随机移除某个key。应该也没人用吧,你不删最少使用Key,去随机删。
4)volatile-lru:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,移除最近最少使用的key。这种情况一般是把redis既当缓存,又做持久化存储的时候才用。不推荐
5)volatile-random:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,随机移除某个key。依然不推荐
6)volatile-ttl:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,有更早过期时间的key优先移除。不推荐
ps:如果没有设置 expire 的key, 不满足先决条件(prerequisites); 那么 volatile-lru, volatile-random 和 volatile-ttl 策略的行为, 和 noeviction(不删除) 基本上一致。
可以参考:《关于缓存命中率的几个关键问题》

6、Redis和数据库双写一致性问题

分析:一致性问题是分布式常见问题,还可以再分为最终一致性和强一致性。数据库和缓存双写,就必然会存在不一致的问题。答这个问题,先明白一个前提。就是如果对数据有强一致性要求,不能放缓存。我们所做的一切,只能保证最终一致性。另外,我们所做的方案其实从根本上来说,只能说降低不一致发生的概率,无法完全避免。因此,有强一致性要求的数据,不能放缓存。
回答:《分布式之数据库和缓存双写一致性方案解析》给出了详细的分析,在这里简单的说一说。首先,采取正确更新策略,先更新数据库,再删缓存。其次,因为可
可以参考:《分布式之数据库和缓存双写一致性方案解析!》

7、如何应对缓存穿透和缓存雪崩问题

  1. 缓存穿透
    即黑客故意去请求缓存中不存在的数据,导致所有的请求都怼到数据库上,从而数据库连接异常
    解决方案:
    (一)利用互斥锁,缓存失效的时候,先去获得锁,得到锁了,再去请求数据库。没得到锁,则休眠一段时间重试
    (二)采用异步更新策略,无论key是否取到值,都直接返回。value值中维护一个缓存失效时间,缓存如果过期,异步起一个线程去读数据库,更新缓存。需要做缓存预热(项目启动前,先加载缓存)操作。
    (三)提供一个能迅速判断请求是否有效的拦截机制,比如,利用布隆过滤器,内部维护一系列合法有效的key。迅速判断出,请求所携带的Key是否合法有效。如果不合法,则直接返回。

  2. 缓存雪崩
    缓存同一时间大面积的失效,这个时候又来了一波请求,结果请求都怼到数据库上,从而导致数据库连接异常
    (一)给缓存的失效时间,加上一个随机值,避免集体失效。
    (二)使用互斥锁,但是该方案吞吐量明显下降了。
    (三)双缓存。我们有两个缓存,缓存A和缓存B。缓存A的失效时间为20分钟,缓存B不设失效时间。自己做缓存预热操作。然后细分以下几个小点
    I 从缓存A读数据库,有则直接返回
    II A没有数据,直接从B读数据,直接返回,并且异步启动一个更新线程。
    III 更新线程同时更新缓存A和缓存B。

你可能感兴趣的:(Redis)