1、参考https://blog.csdn.net/u014696921/article/details/70245141 使用caffe训练多任务模型
2、使用opencv3.4.0读取caffe模型并输出识别结果;
3、关键点,常用的Mat prob_type = net.forward("prob_type");形式只能获取第一个输出,并不适用于多任务的输出,注意看forward函数的说明。需要使用以下形式 获取输出
std::vector
vector
net.forward(prob_test, prob_name);
/**M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "stdafx.h"
#include
#include
#include
#include
using namespace cv;
using namespace cv::dnn;
#include
#include
#include
using namespace std;
/* Find best class for the blob (i. e. class with maximal probability) */
static void getMaxClass(const Mat &probBlob, int *classId, double *classProb)
{
Mat probMat = probBlob.reshape(1, 1); //reshape the blob to 1x1000 matrix
Point classNumber;
minMaxLoc(probMat, NULL, classProb, NULL, &classNumber);
*classId = classNumber.x;
}
static std::vector readClassNames(const char *filename = "synset_words.txt")
{
std::vector classNames;
std::ifstream fp(filename);
if (!fp.is_open())
{
std::cerr << "File with classes labels not found: " << filename << std::endl;
exit(-1);
}
std::string name;
while (!fp.eof())
{
std::getline(fp, name);
if (name.length())
classNames.push_back(name.substr(name.find(' ') + 1));
}
fp.close();
return classNames;
}
const char* params
= "{ help | false | Sample app for loading googlenet model }"
"{ proto | bvlc_googlenet.prototxt | model configuration }"
"{ model | bvlc_googlenet.caffemodel | model weights }"
"{ image | space_shuttle.jpg | path to image file }"
"{ opencl | false | enable OpenCL }"
;
int main(int argc, char **argv)
{
CV_TRACE_FUNCTION();
//CommandLineParser parser(argc, argv, params);
//if (parser.get("help"))
//{
// parser.printMessage();
// return 0;
//}
//String modelTxt = parser.get("proto");
//String modelBin = parser.get("model");
//String imageFile = parser.get("image");
String modelTxt = "E:\\data\\car_multilabel\\Caffe_MultiLabel_Classification-master\\deploy.prototxt";
String modelBin = "E:\\data\\car_multilabel\\ZnCar\\train_snapshot_iter_1000.caffemodel";
String imageFile = "E:\\data\\car_multilabel\\ZnCar\\Test\\4.jpg";
Net net;
try {
//! [Read and initialize network]
net = dnn::readNetFromCaffe(modelTxt, modelBin);
//! [Read and initialize network]
}
catch (cv::Exception& e) {
std::cerr << "Exception: " << e.what() << std::endl;
//! [Check that network was read successfully]
if (net.empty())
{
std::cerr << "Can't load network by using the following files: " << std::endl;
std::cerr << "prototxt: " << modelTxt << std::endl;
std::cerr << "caffemodel: " << modelBin << std::endl;
std::cerr << "bvlc_googlenet.caffemodel can be downloaded here:" << std::endl;
std::cerr << "http://dl.caffe.berkeleyvision.org/bvlc_googlenet.caffemodel" << std::endl;
exit(-1);
}
//! [Check that network was read successfully]
}
//if (parser.get("opencl"))
//{
// net.setPreferableTarget(DNN_TARGET_OPENCL);
//}
//! [Prepare blob]
Mat img = imread(imageFile);
if (img.empty())
{
std::cerr << "Can't read image from the file: " << imageFile << std::endl;
exit(-1);
}
//GoogLeNet accepts only 224x224 BGR-images
Mat inputBlob = blobFromImage(img, 1.0f, Size(227, 227),
Scalar(123, 124, 121), false); //Convert Mat to batch of images
//! [Prepare blob]
net.setInput(inputBlob, "data"); //set the network input
std::vector> prob_test ;
vector prob_name = { "fc8_type","prob_type","fc8_surface", "prob_surface" };
//关键在这里,常用的Mat prob_type = net.forward("prob_type");形式只能获取第一个输出,并不适用于多任务的输出,注意看forward函数的说明