Java8内存模型(关于永久区、元数据Metaspace、老年代、新生代)

一、JVM 内存模型

根据 JVM 规范,JVM 内存共分为虚拟机栈、堆、方法区、程序计数器、本地方法栈五个部分。

Java8内存模型(关于永久区、元数据Metaspace、老年代、新生代)_第1张图片

 1、虚拟机栈:每个线程有一个私有的栈,随着线程的创建而创建。栈里面存着的是一种叫“栈帧”的东西,每个方法会创建一个栈帧,栈帧中存放了局部变量表(基本数据类型和对象引用)、操作数栈、方法出口等信息。栈的大小可以固定也可以动态扩展。当栈调用深度大于JVM所允许的范围,会抛出StackOverflowError的错误,不过这个深度范围不是一个恒定的值,我们通过下面这段程序可以测试一下这个结果:

栈溢出测试源码:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

package com.paddx.test.memory;

 

public class StackErrorMock {

    private static int index = 1;

 

    public void call(){

        index++;

        call();

    }

 

    public static void main(String[] args) {

        StackErrorMock mock = new StackErrorMock();

        try {

            mock.call();

        }catch (Throwable e){

            System.out.println("Stack deep : "+index);

            e.printStackTrace();

        }

    }

}

代码段 1

运行三次,可以看出每次栈的深度都是不一样的,输出结果如下。

Java8内存模型(关于永久区、元数据Metaspace、老年代、新生代)_第2张图片

至于红色框里的值是怎么出来的,就需要深入到 JVM 的源码中才能探讨,这里不作详细阐述。

虚拟机栈除了上述错误外,还有另一种错误,那就是当申请不到空间时,会抛出 OutOfMemoryError。这里有一个小细节需要注意,catch 捕获的是 Throwable,而不是 Exception。因为 StackOverflowError 和 OutOfMemoryError 都不属于 Exception 的子类。

2、本地方法栈:

  这部分主要与虚拟机用到的 Native 方法相关,一般情况下, Java 应用程序员并不需要关心这部分的内容。

3、程序计数器(PC 寄存器):

  PC 寄存器,也叫程序计数器。JVM支持多个线程同时运行,每个线程都有自己的程序计数器。倘若当前执行的是 JVM 的方法,则该寄存器中保存当前执行指令的地址;倘若执行的是native 方法,则PC寄存器中为空。

程序执行时,PC的初值为程序第一条指令的地址,在顺序执行程序时,控制器首先按程序计数器所指出的指令地址从内存中取出一条指令,然后分析和执行该指令,同时将PC的值加1指向下一条要执行的指令。

4、堆

  堆内存是 JVM 所有线程共享的部分,在虚拟机启动的时候就已经创建。所有的对象和数组都在堆上进行分配。这部分空间可通过 GC 进行回收。当申请不到空间时会抛出 OutOfMemoryError。下面我们简单的模拟一个堆内存溢出的情况:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

package com.paddx.test.memory;

 

import java.util.ArrayList;

import java.util.List;

 

public class HeapOomMock {

    public static void main(String[] args) {

        List<byte[]> list = new ArrayList<byte[]>();

        int i = 0;

        boolean flag = true;

        while (flag){

            try {

                i++;

                list.add(new byte[1024 1024]);//每次增加一个1M大小的数组对象

            }catch (Throwable e){

                e.printStackTrace();

                flag = false;

                System.out.println("count="+i);//记录运行的次数

            }

        }

    }

}

代码段 2

运行上述代码,输出结果如下:  

   

注意,这里我指定了堆内存的大小为16M,所以这个地方显示的count=14(这个数字不是固定的),至于为什么会是14或其他数字,需要根据 GC 日志来判断,具体原因会在下篇文章中给大家解释。

5、方法区:

  方法区也是所有线程共享。主要用于存储类的信息、常量池(链接:https://blog.csdn.net/kdy527/article/details/86511410)、方法数据、方法代码等。方法区逻辑上属于堆的一部分,但是为了与堆进行区分,通常又叫“非堆”。 关于方法区内存溢出的问题会在下文中详细探讨。

二、PermGen(永久代)

  绝大部分 Java 程序员应该都见过 "java.lang.OutOfMemoryError: PermGen space "这个异常。这里的 “PermGen space”其实指的就是方法区。不过方法区和“PermGen space”又有着本质的区别。前者是 JVM 的规范,而后者则是 JVM 规范的一种实现,并且只有 HotSpot 才有 “PermGen space”,而对于其他类型的虚拟机,如 JRockit(Oracle)、J9(IBM) 并没有“PermGen space”。由于方法区主要存储类的相关信息,所以对于动态生成类的情况比较容易出现永久代的内存溢出。最典型的场景就是,在 jsp 页面比较多的情况,容易出现永久代内存溢出。我们现在通过动态生成类来模拟 “PermGen space”的内存溢出:

 代码段 3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

package com.paddx.test.memory;

 

import java.io.File;

import java.net.URL;

import java.net.URLClassLoader;

import java.util.ArrayList;

import java.util.List;

 

public class PermGenOomMock{

    public static void main(String[] args) {

        URL url = null;

        List classLoaderList = new ArrayList();

        try {

            url = new File("/tmp").toURI().toURL();

            URL[] urls = {url};

            while (true){

                ClassLoader loader = new URLClassLoader(urls);

                classLoaderList.add(loader);

                loader.loadClass("com.paddx.test.memory.Test");

            }

        catch (Exception e) {

            e.printStackTrace();

        }

    }

}

运行结果如下:

Java8内存模型(关于永久区、元数据Metaspace、老年代、新生代)_第3张图片

  本例中使用的 JDK 版本是 1.7,指定的 PermGen 区的大小为 8M。通过每次生成不同URLClassLoader对象来加载Test类,从而生成不同的类对象,这样就能看到我们熟悉的 "java.lang.OutOfMemoryError: PermGen space " 异常了。这里之所以采用 JDK 1.7,是因为在 JDK 1.8 中, HotSpot 已经没有 “PermGen space”这个区间了,取而代之是一个叫做 Metaspace(元空间) 的东西。下面我们就来看看 Metaspace 与 PermGen space 的区别。

三、Metaspace(元空间)

  其实,移除永久代的工作从JDK1.7就开始了。JDK1.7中,存储在永久代的部分数据就已经转移到了Java Heap或者是 Native Heap。但永久代仍存在于JDK1.7中,并没完全移除,譬如符号引用(Symbols)转移到了native heap;字面量(interned strings)转移到了java heap;类的静态变量(class statics)转移到了java heap。我们可以通过一段程序来比较 JDK 1.6 与 JDK 1.7及 JDK 1.8 的区别,以字符串常量为例:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

package com.paddx.test.memory;

 

import java.util.ArrayList;

import java.util.List;

 

public class StringOomMock {

    static String  base = "string";

    public static void main(String[] args) {

        List list = new ArrayList();

        for (int i=0;i< Integer.MAX_VALUE;i++){

            String str = base + base;

            base = str;

            list.add(str.intern());

        }

    }

}

这段程序以2的指数级不断的生成新的字符串,这样可以比较快速的消耗内存。我们通过 JDK 1.6、JDK 1.7 和 JDK 1.8 分别运行:

JDK 1.6 的运行结果:

Java8内存模型(关于永久区、元数据Metaspace、老年代、新生代)_第4张图片

JDK 1.7的运行结果:

Java8内存模型(关于永久区、元数据Metaspace、老年代、新生代)_第5张图片

JDK 1.8的运行结果:

Java8内存模型(关于永久区、元数据Metaspace、老年代、新生代)_第6张图片

  从上述结果可以看出,JDK 1.6下,会出现“PermGen Space”的内存溢出,而在 JDK 1.7和 JDK 1.8 中,会出现堆内存溢出,并且 JDK 1.8中 PermSize 和 MaxPermGen 已经无效。因此,可以大致验证 JDK 1.7 和 1.8 将字符串常量由永久代转移到堆中,并且 JDK 1.8 中已经不存在永久代的结论。现在我们看看元空间到底是一个什么东西?

  元空间的本质和永久代类似,都是对JVM规范中方法区的实现。不过元空间与永久代之间最大的区别在于:元空间并不在虚拟机中,而是使用本地内存。因此,默认情况下,元空间的大小仅受本地内存限制,但可以通过以下参数来指定元空间的大小:

  -XX:MetaspaceSize,初始空间大小,达到该值就会触发垃圾收集进行类型卸载,同时GC会对该值进行调整:如果释放了大量的空间,就适当降低该值;如果释放了很少的空间,那么在不超过MaxMetaspaceSize时,适当提高该值。
  -XX:MaxMetaspaceSize,最大空间,默认是没有限制的。

  除了上面两个指定大小的选项以外,还有两个与 GC 相关的属性:
  -XX:MinMetaspaceFreeRatio,在GC之后,最小的Metaspace剩余空间容量的百分比,减少为分配空间所导致的垃圾收集
  -XX:MaxMetaspaceFreeRatio,在GC之后,最大的Metaspace剩余空间容量的百分比,减少为释放空间所导致的垃圾收集

现在我们在 JDK 8下重新运行一下代码段 4,不过这次不再指定 PermSize 和 MaxPermSize。而是指定 MetaSpaceSize 和 MaxMetaSpaceSize的大小。输出结果如下:

Java8内存模型(关于永久区、元数据Metaspace、老年代、新生代)_第7张图片

从输出结果,我们可以看出,这次不再出现永久代溢出,而是出现了元空间的溢出。

MaxMetaspaceSize的调优

  • -XX:MaxMetaspaceSize={unlimited}
  • 元空间的大小受限于你机器的内存
  • 限制类的元数据使用的内存大小,以免出现虚拟内存切换以及本地内存分配失败。如果怀疑有类加载器出现泄露,应当使用这个参数;32位机器上,如果地址空间可能会被耗尽,也应当设置这个参数。
  • 元空间的初始大小是21M——这是GC的初始的高水位线,超过这个大小会进行Full GC来进行类的回收。
  • 如果启动后GC过于频繁,请将该值设置得大一些
  • 可以设置成和持久代一样的大小,以便推迟GC的执行时间

CompressedClassSpaceSize的调优

Klass Metaspace:Klass Metaspace就是用来存klass的,klass是我们熟知的class文件在jvm里的运行时数据结构,不过有点要提的是我们看到的类似A.class其实是存在heap里的,是java.lang.Class的一个对象实例。可通过-XX:CompressedClassSpaceSize参数来控制,这个参数前面提到了默认是1G,但是这块内存也可以没有。

  • 只有当-XX:+UseCompressedClassPointers开启了才有效
  • -XX:CompressedClassSpaceSize=1G
  • 由于这个大小在启动的时候就固定了的,因此最好设置得大点。
  • 没有使用到的话不要进行设置
  • JVM后续可能会让这个区可以动态的增长。不需要是连续的区域,只要从基地址可达就行;可能会将更多的类元信息放回到元空间中;未来会基于PredictedLoadedClassCount的值来自动的设置该空间的大小

正如前面提到了,Metaspace VM管理Metaspace空间的增长。但有时你会想通过在命令行显示的设置参数-XX:MaxMetaspaceSize来限制Metaspace空间的增长。默认情况下,-XX:MaxMetaspaceSize并没有限制,因此,在技术上,Metaspace的尺寸可以增长到交换空间,而你的本地内存分配将会失败。

每次垃圾收集之后,Metaspace VM会自动的调整high watermark,推迟下一次对Metaspace的垃圾收集。

这两个参数,-XX:MinMetaspaceFreeRatio和-XX:MaxMetaspaceFreeRatio,类似于GC的FreeRatio参数,可以放在命令行。

Metaspace可以使用的工具

针对Metaspace,JDK自带的一些工具做了修改来展示Metaspace的信息:

  • jmap -clstats :打印类加载器的统计信息(取代了在JDK8之前打印类加载器信息的permstat)。
  • jstat -gc :Metaspace的信息也会被打印出来。
  • jcmd GC.class_stats:这是一个新的诊断命令,可以使用户连接到存活的JVM,转储Java类元数据的详细统计。

四、总结为什么用元空间Metaspace取代永久代

  通过上面分析,大家应该大致了解了 JVM 的内存划分,也清楚了 JDK 8 中永久代向元空间的转换。不过大家应该都有一个疑问,就是为什么要做这个转换?所以,最后给大家总结以下几点原因:

  1、字符串存在永久代中,容易出现性能问题和内存溢出。

  2、类及方法的信息等比较难确定其大小,因此对于永久代的大小指定比较困难,太小容易出现永久代溢出,太大则容易导致老年代溢出。

  3、永久代会为 GC 带来不必要的复杂度,并且回收效率偏低。

  4、Oracle 可能会将HotSpot 与 JRockit 合二为一。

五、年轻代、老年代和永久代的内存分配、JVM堆内存相关的启动参数

1,为什么需要把堆分代?

分代的唯一理由就是优化GC性能

  • 如果没有分代,所有的对象都在一块,GC的时要找到哪些对象是没用的,这样就会对堆的所有区域进行扫描。而我们的很多对象都是朝生夕死的。
  • 如果分代的话,把新创建的对象放到某一地方,当GC的时先把这块存“朝生夕死”对象的区域进行回收,这样就会腾出很大的空间出来。

2,Minor GC、Major GC和Full GC之间的区别

  • 从年轻代空间(包括 Eden 和 Survivor 区域)回收内存被称为 Minor GC
  • Major GC 是清理老年代。
  • Full GC 是清理整个堆空间—包括年轻代和老年代。

3,年轻代中的GC

3,1,HotSpot JVM把年轻代分为了三部分:

1个Eden区和2个Survivor区(分别叫from和to)。默认比例为8:1

3,2,年轻和老年代的关系

一般情况下,新创建的对象都会被分配到Eden区(一些大对象特殊处理),这些对象经过第一次Minor GC后,
如果仍然存活,将会被移到Survivor区。对象在Survivor区中每熬过一次Minor GC,年龄就会增加1岁,
当它的年龄增加到一定程度时,就会被移动到年老代中。

3,3,年轻代采用复制算法回收对象

因为年轻代中的对象基本都是朝生夕死的(80%以上),所以在年轻代的垃圾回收算法使用的是复制算法,

将内存分为两块,每次只用其中一块,当这一块内存用完,就将还活着的对象复制到另外一块上面。
复制算法不会产生内存碎片。

3,4,年轻代回收的步骤:

复制代码

1,在GC开始的时候,对象只会存在于Eden区和名为“From”的Survivor区,Survivor区“To”是空的。
2,紧接着进行GC,Eden区中所有存活的对象都会被复制到“To”,
3,而在“From”区中,仍存活的对象会根据他们的年龄值来决定去向。
   年龄达到一定值(年龄阈值,可以通过-XX:MaxTenuringThreshold来设置)的对象会被移动到年老代中,没有达到阈值的对象会被复制到“To”区域。
4,经过这次GC后,Eden区和From区已经被清空。
   这个时候,“From”和“To”会交换他们的角色,也就是新的“To”就是上次GC前的“From”,新的“From”就是上次GC前的“To”。
   不管怎样,都会保证名为To的Survivor区域是空的。
5,Minor GC会一直重复这样的过程,直到“To”区被填满,“To”区被填满之后,会将所有对象移动到年老代中。

复制代码

Java8内存模型(关于永久区、元数据Metaspace、老年代、新生代)_第8张图片

4.有关年轻代的JVM参数

1)-XX:NewSize和-XX:MaxNewSize

用于设置年轻代的大小,建议设为整个堆大小的1/3或者1/4,两个值设为一样大。

2)-XX:SurvivorRatio

用于设置Eden和其中一个Survivor的比值,这个设置新生代中1个Eden区与1个Survivor区的大小比值。在hotspot虚拟机中,新生代 = 1个Eden + 2个Survivor。如果新生代内存是10M,SurvivorRatio=8,那么Eden区占8M,2个Survivor区各占1M。

3)-XX:+PrintTenuringDistribution

这个参数用于显示每次Minor GC时Survivor区中各个年龄段的对象的大小。

4).-XX:InitialTenuringThreshol和-XX:MaxTenuringThreshold

用于设置晋升到老年代的对象年龄的最小值和最大值,每个对象在坚持过一次Minor GC之后,年龄就加1。

5)-Xms 和 -Xmx (-XX:InitialHeapSize 和 -XX:MaxHeapSize):

指定JVM初始占用的堆内存和最大堆内存。JVM也是一个软件,也必须要获取本机的物理内

存,然后JVM会负责管理向操作系统申请到的内存资源。JVM启动的时候会向操作系统申请 -Xms 设置的内存,JVM启动后运行一段时间,如果发现内存空间

不足,会再次向操作系统申请内存。JVM能够获取到的最大堆内存是-Xmx设置的值。

6)-XX:OldSize:

设置JVM启动分配的老年代内存大小,类似于新生代内存的初始大小-XX:NewSize。

5.查看JVM参数

通过jps命令获取到进程pid,然后通过jmap -heap pid就可以查看内存分配和使用情况。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

>jmap -heap 8912

Attaching to process ID 8912, please wait...

Debugger attached successfully.

Client compiler detected.

JVM version is 24.60-b09

 

using thread-local object allocation.

Mark Sweep Compact GC

 

Heap Configuration:

   MinHeapFreeRatio = 40

   MaxHeapFreeRatio = 70

   MaxHeapSize      = 209715200 (200.0MB)

   NewSize          = 104857600 (100.0MB)

   MaxNewSize       = 104857600 (100.0MB)

   OldSize          = 62914560 (60.0MB)

   NewRatio         = 3

   SurvivorRatio    = 8

   PermSize         = 52428800 (50.0MB)

   MaxPermSize      = 52428800 (50.0MB)

你可能感兴趣的:(内存)