一、JVM 内存模型
根据 JVM 规范,JVM 内存共分为虚拟机栈、堆、方法区、程序计数器、本地方法栈五个部分。
1、虚拟机栈:每个线程有一个私有的栈,随着线程的创建而创建。栈里面存着的是一种叫“栈帧”的东西,每个方法会创建一个栈帧,栈帧中存放了局部变量表(基本数据类型和对象引用)、操作数栈、方法出口等信息。栈的大小可以固定也可以动态扩展。当栈调用深度大于JVM所允许的范围,会抛出StackOverflowError的错误,不过这个深度范围不是一个恒定的值,我们通过下面这段程序可以测试一下这个结果:
栈溢出测试源码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
|
代码段 1
运行三次,可以看出每次栈的深度都是不一样的,输出结果如下。
至于红色框里的值是怎么出来的,就需要深入到 JVM 的源码中才能探讨,这里不作详细阐述。
虚拟机栈除了上述错误外,还有另一种错误,那就是当申请不到空间时,会抛出 OutOfMemoryError。这里有一个小细节需要注意,catch 捕获的是 Throwable,而不是 Exception。因为 StackOverflowError 和 OutOfMemoryError 都不属于 Exception 的子类。
2、本地方法栈:
这部分主要与虚拟机用到的 Native 方法相关,一般情况下, Java 应用程序员并不需要关心这部分的内容。
3、程序计数器(PC 寄存器):
PC 寄存器,也叫程序计数器。JVM支持多个线程同时运行,每个线程都有自己的程序计数器。倘若当前执行的是 JVM 的方法,则该寄存器中保存当前执行指令的地址;倘若执行的是native 方法,则PC寄存器中为空。
程序执行时,PC的初值为程序第一条指令的地址,在顺序执行程序时,控制器首先按程序计数器所指出的指令地址从内存中取出一条指令,然后分析和执行该指令,同时将PC的值加1指向下一条要执行的指令。
4、堆
堆内存是 JVM 所有线程共享的部分,在虚拟机启动的时候就已经创建。所有的对象和数组都在堆上进行分配。这部分空间可通过 GC 进行回收。当申请不到空间时会抛出 OutOfMemoryError。下面我们简单的模拟一个堆内存溢出的情况:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
|
代码段 2
运行上述代码,输出结果如下:
注意,这里我指定了堆内存的大小为16M,所以这个地方显示的count=14(这个数字不是固定的),至于为什么会是14或其他数字,需要根据 GC 日志来判断,具体原因会在下篇文章中给大家解释。
5、方法区:
方法区也是所有线程共享。主要用于存储类的信息、常量池(链接:https://blog.csdn.net/kdy527/article/details/86511410)、方法数据、方法代码等。方法区逻辑上属于堆的一部分,但是为了与堆进行区分,通常又叫“非堆”。 关于方法区内存溢出的问题会在下文中详细探讨。
二、PermGen(永久代)
绝大部分 Java 程序员应该都见过 "java.lang.OutOfMemoryError: PermGen space "这个异常。这里的 “PermGen space”其实指的就是方法区。不过方法区和“PermGen space”又有着本质的区别。前者是 JVM 的规范,而后者则是 JVM 规范的一种实现,并且只有 HotSpot 才有 “PermGen space”,而对于其他类型的虚拟机,如 JRockit(Oracle)、J9(IBM) 并没有“PermGen space”。由于方法区主要存储类的相关信息,所以对于动态生成类的情况比较容易出现永久代的内存溢出。最典型的场景就是,在 jsp 页面比较多的情况,容易出现永久代内存溢出。我们现在通过动态生成类来模拟 “PermGen space”的内存溢出:
代码段 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
|
运行结果如下:
本例中使用的 JDK 版本是 1.7,指定的 PermGen 区的大小为 8M。通过每次生成不同URLClassLoader对象来加载Test类,从而生成不同的类对象,这样就能看到我们熟悉的 "java.lang.OutOfMemoryError: PermGen space " 异常了。这里之所以采用 JDK 1.7,是因为在 JDK 1.8 中, HotSpot 已经没有 “PermGen space”这个区间了,取而代之是一个叫做 Metaspace(元空间) 的东西。下面我们就来看看 Metaspace 与 PermGen space 的区别。
三、Metaspace(元空间)
其实,移除永久代的工作从JDK1.7就开始了。JDK1.7中,存储在永久代的部分数据就已经转移到了Java Heap或者是 Native Heap。但永久代仍存在于JDK1.7中,并没完全移除,譬如符号引用(Symbols)转移到了native heap;字面量(interned strings)转移到了java heap;类的静态变量(class statics)转移到了java heap。我们可以通过一段程序来比较 JDK 1.6 与 JDK 1.7及 JDK 1.8 的区别,以字符串常量为例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
|
这段程序以2的指数级不断的生成新的字符串,这样可以比较快速的消耗内存。我们通过 JDK 1.6、JDK 1.7 和 JDK 1.8 分别运行:
JDK 1.6 的运行结果:
JDK 1.7的运行结果:
JDK 1.8的运行结果:
从上述结果可以看出,JDK 1.6下,会出现“PermGen Space”的内存溢出,而在 JDK 1.7和 JDK 1.8 中,会出现堆内存溢出,并且 JDK 1.8中 PermSize 和 MaxPermGen 已经无效。因此,可以大致验证 JDK 1.7 和 1.8 将字符串常量由永久代转移到堆中,并且 JDK 1.8 中已经不存在永久代的结论。现在我们看看元空间到底是一个什么东西?
元空间的本质和永久代类似,都是对JVM规范中方法区的实现。不过元空间与永久代之间最大的区别在于:元空间并不在虚拟机中,而是使用本地内存。因此,默认情况下,元空间的大小仅受本地内存限制,但可以通过以下参数来指定元空间的大小:
-XX:MetaspaceSize,初始空间大小,达到该值就会触发垃圾收集进行类型卸载,同时GC会对该值进行调整:如果释放了大量的空间,就适当降低该值;如果释放了很少的空间,那么在不超过MaxMetaspaceSize时,适当提高该值。
-XX:MaxMetaspaceSize,最大空间,默认是没有限制的。
除了上面两个指定大小的选项以外,还有两个与 GC 相关的属性:
-XX:MinMetaspaceFreeRatio,在GC之后,最小的Metaspace剩余空间容量的百分比,减少为分配空间所导致的垃圾收集
-XX:MaxMetaspaceFreeRatio,在GC之后,最大的Metaspace剩余空间容量的百分比,减少为释放空间所导致的垃圾收集
现在我们在 JDK 8下重新运行一下代码段 4,不过这次不再指定 PermSize 和 MaxPermSize。而是指定 MetaSpaceSize 和 MaxMetaSpaceSize的大小。输出结果如下:
从输出结果,我们可以看出,这次不再出现永久代溢出,而是出现了元空间的溢出。
MaxMetaspaceSize的调优
CompressedClassSpaceSize的调优
Klass Metaspace:Klass Metaspace就是用来存klass的,klass是我们熟知的class文件在jvm里的运行时数据结构,不过有点要提的是我们看到的类似A.class其实是存在heap里的,是java.lang.Class的一个对象实例。可通过-XX:CompressedClassSpaceSize参数来控制,这个参数前面提到了默认是1G,但是这块内存也可以没有。
正如前面提到了,Metaspace VM管理Metaspace空间的增长。但有时你会想通过在命令行显示的设置参数-XX:MaxMetaspaceSize来限制Metaspace空间的增长。默认情况下,-XX:MaxMetaspaceSize并没有限制,因此,在技术上,Metaspace的尺寸可以增长到交换空间,而你的本地内存分配将会失败。
每次垃圾收集之后,Metaspace VM会自动的调整high watermark,推迟下一次对Metaspace的垃圾收集。
这两个参数,-XX:MinMetaspaceFreeRatio和-XX:MaxMetaspaceFreeRatio,类似于GC的FreeRatio参数,可以放在命令行。
Metaspace可以使用的工具
针对Metaspace,JDK自带的一些工具做了修改来展示Metaspace的信息:
四、总结为什么用元空间Metaspace取代永久代
通过上面分析,大家应该大致了解了 JVM 的内存划分,也清楚了 JDK 8 中永久代向元空间的转换。不过大家应该都有一个疑问,就是为什么要做这个转换?所以,最后给大家总结以下几点原因:
1、字符串存在永久代中,容易出现性能问题和内存溢出。
2、类及方法的信息等比较难确定其大小,因此对于永久代的大小指定比较困难,太小容易出现永久代溢出,太大则容易导致老年代溢出。
3、永久代会为 GC 带来不必要的复杂度,并且回收效率偏低。
4、Oracle 可能会将HotSpot 与 JRockit 合二为一。
五、年轻代、老年代和永久代的内存分配、JVM堆内存相关的启动参数
分代的唯一理由就是优化GC性能
3,1,HotSpot JVM把年轻代分为了三部分:
1个Eden区和2个Survivor区(分别叫from和to)。默认比例为8:1
3,2,年轻和老年代的关系
一般情况下,新创建的对象都会被分配到Eden区(一些大对象特殊处理),这些对象经过第一次Minor GC后,
如果仍然存活,将会被移到Survivor区。对象在Survivor区中每熬过一次Minor GC,年龄就会增加1岁,
当它的年龄增加到一定程度时,就会被移动到年老代中。
3,3,年轻代采用复制算法回收对象
因为年轻代中的对象基本都是朝生夕死的(80%以上),所以在年轻代的垃圾回收算法使用的是复制算法,
将内存分为两块,每次只用其中一块,当这一块内存用完,就将还活着的对象复制到另外一块上面。
复制算法不会产生内存碎片。
3,4,年轻代回收的步骤:
1,在GC开始的时候,对象只会存在于Eden区和名为“From”的Survivor区,Survivor区“To”是空的。
2,紧接着进行GC,Eden区中所有存活的对象都会被复制到“To”,
3,而在“From”区中,仍存活的对象会根据他们的年龄值来决定去向。
年龄达到一定值(年龄阈值,可以通过-XX:MaxTenuringThreshold来设置)的对象会被移动到年老代中,没有达到阈值的对象会被复制到“To”区域。
4,经过这次GC后,Eden区和From区已经被清空。
这个时候,“From”和“To”会交换他们的角色,也就是新的“To”就是上次GC前的“From”,新的“From”就是上次GC前的“To”。
不管怎样,都会保证名为To的Survivor区域是空的。
5,Minor GC会一直重复这样的过程,直到“To”区被填满,“To”区被填满之后,会将所有对象移动到年老代中。
1)-XX:NewSize和-XX:MaxNewSize
用于设置年轻代的大小,建议设为整个堆大小的1/3或者1/4,两个值设为一样大。
2)-XX:SurvivorRatio
用于设置Eden和其中一个Survivor的比值,这个设置新生代中1个Eden区与1个Survivor区的大小比值。在hotspot虚拟机中,新生代 = 1个Eden + 2个Survivor。如果新生代内存是10M,SurvivorRatio=8,那么Eden区占8M,2个Survivor区各占1M。
3)-XX:+PrintTenuringDistribution
这个参数用于显示每次Minor GC时Survivor区中各个年龄段的对象的大小。
4).-XX:InitialTenuringThreshol和-XX:MaxTenuringThreshold
用于设置晋升到老年代的对象年龄的最小值和最大值,每个对象在坚持过一次Minor GC之后,年龄就加1。
5)-Xms 和 -Xmx (-XX:InitialHeapSize 和 -XX:MaxHeapSize):
指定JVM初始占用的堆内存和最大堆内存。JVM也是一个软件,也必须要获取本机的物理内
存,然后JVM会负责管理向操作系统申请到的内存资源。JVM启动的时候会向操作系统申请 -Xms 设置的内存,JVM启动后运行一段时间,如果发现内存空间
不足,会再次向操作系统申请内存。JVM能够获取到的最大堆内存是-Xmx设置的值。
6)-XX:OldSize:
设置JVM启动分配的老年代内存大小,类似于新生代内存的初始大小-XX:NewSize。
通过jps命令获取到进程pid,然后通过jmap -heap pid就可以查看内存分配和使用情况。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
|