Python之——用Mrjob框架编写Hadoop MapReduce程序(基于Hadoop 2.5.2)

转载请注明出处:http://blog.csdn.net/l1028386804/article/details/79056120

一、环境准备

想了解如何使用原生Python编写MapReduce程序或者如何搭建Hadoop环境请参考博文《Python之——使用原生Python编写Hadoop MapReduce程序(基于Hadoop 2.5.2) 》的内容

Mrjob(http://pythonhosted.org/mrjob/index.html) 是一个编写MapRecuce任务的开源Python框架,它实际上对Hadoop Stream的命令进行了封装,因此让开发者接触不到Hadoop数据流命令行,使我们更轻松、快速编写MapReduce任务。Mrjob具有如下特点。

1)代码简介,map和reduce函数通过一个Python文件就可以搞定;

2)支持多步骤的MapReduce任务工作流;

3)支持多种运行方式,包括内嵌方式、本地环境、Hadoop、远程亚马逊;

4)支持亚马逊网络数据分析服务Elastic MapReduce(EMR);

5)调试方便,无需任务环境支持

安装Mrjob要求环境为Python 2.5及以上版本,源码下载地址为:https://github.com/yelp/mrjob

# pip install mrjob  #pip安装方式
# python setup.py install #源码安装方式

二、利用Mrjob实现MapReduce

本实例同样实现统计文本文件(/usr/local/python/source/input.txt)中所有单词出现的词频,Mrjob通过,mapper()与reducer()方法实现了MR操作,具体代码如下:

【/usr/local/python/source/word_count.py】

# -*- coding:UTF-8 -*-
'''
Created on 2018年1月14日

@author: liuyazhuang
'''

from mrjob.job import MRJob

class MRWordCounter(MRJob):
    def mapper(self, key, line):
        for word in line.split():
            yield word, 1
            
    def reducer(self, word, occurrences):
        yield word, sum(occurrences)
        
if __name__ == '__main__':
    MRWordCounter.run()
可以看出代码行数只是原生Python的1/3,逻辑也比较清晰,代码中包含了mapper、reducer函数。mapper函数接收每一行的输入数据,处理后返回一对key:value,初始化value为1;reducer接收mapper输出的key-value对进行整合,把相同key的value作累加操作后输出。Mrjob利用Python的yield机制将函数变成一个Generators(生成器),通过不断调用next()实现key-value的初始化或运算操作。

三、运行MapReduce

1、内嵌(-r inline)方式

特点是调试方便,启动单一进程模拟任务执行状态和结果,默认(-r inline)可以省略,输出文件使用 > output-file 或-o output-file,比如下面两种运行方式是等价的:

python word_count.py -r inline input.txt > output.txt
python word_count.py input.txt > output.txt
此时我们执行cat output.txt操作

[root@liuyazhuang121 source]# cat output.txt 
"test"  2
"welcome"       1
"where" 1
"xxx"   2
"aaa"   1
"ab"    1
"abc"   1
"adc"   1
"bar"   2
"bbb"   2
"xxyy"  1
"you"   1
"your"  1
"yyy"   2
"hello" 2
"home"  2
"iii"   2
"is"    1
"labs"  1
"liuyazhuang"   2
"lyz"   2
"bc"    1
"bec"   1
"by"    1
"ccc"   2
"hadoop"        2
"me"    1
"ooo"   2
"python"        2
"see"   1
得出了正确结果。

2、本地(-r local)方式

用于本地模拟Hadoop调试,与内嵌(inline)方式的区别是启动了多进程执行每一个任务。如:

python word_count.py -r local input.txt > output1.txt
此时我们cat output1.txt查看结果:

[root@liuyazhuang121 source]# cat output1.txt 
"test"  2
"welcome"       1
"where" 1
"xxx"   2
"aaa"   1
"ab"    1
"abc"   1
"adc"   1
"bar"   2
"bbb"   2
"xxyy"  1
"you"   1
"your"  1
"yyy"   2
"hello" 2
"home"  2
"iii"   2
"is"    1
"labs"  1
"liuyazhuang"   2
"lyz"   2
"bc"    1
"bec"   1
"by"    1
"ccc"   2
"hadoop"        2
"me"    1
"ooo"   2
"python"        2
"see"   1
得出了正确结果。

3、Hadoop(-r hadoop)方式

用于hadoop环境,支持Hadoop运行调度控制参数,如:

1)指定Hadoop任务调度优先级(VERY_HIGH|HIGH),如:--jobconf mapreduce.job.priority=VERY_HIGH。

2)Map及Reduce任务个数限制,如:--jobconf mapreduce.map.tasks=2  --jobconf mapreduce.reduce.tasks=5

注意:执行之前需要配置Hadoop环境变量。

本例中我们依然使用Hadoop HDFS中的/user/root/word/input.txt文件,具体运行命令如下:

 python word_count.py -r hadoop --jobconf mapreduce.job.priority=VERY_HIGH --jobconf mapreduce.map.tasks=2 --jobconf mapduce.reduce.tasks=1 -o hdfs://liuyazhuang121:9000/output/hadoop_word  hdfs://liuyazhuang121:9000/user/root/word
打印的结果如下:

[root@liuyazhuang121 source]# python word_count.py -r hadoop --jobconf mapreduce.job.priority=VERY_HIGH --jobconf mapreduce.map.tasks=2 --jobconf mapduce.reduce.tasks=1 -o hdfs://liuyazhuang121:9000/output/hadoop_word  hdfs://liuyazhuang121:9000/user/root/word
No configs found; falling back on auto-configuration
No configs specified for hadoop runner
Looking for hadoop binary in $PATH...
Found hadoop binary: /usr/local/hadoop-2.5.2/bin/hadoop
Using Hadoop version 2.5.2
Looking for Hadoop streaming jar in /usr/local/hadoop-2.5.2...
Found Hadoop streaming jar: /usr/local/hadoop-2.5.2/share/hadoop/tools/lib/hadoop-streaming-2.5.2.jar
Creating temp directory /tmp/word_count.root.20180114.050606.032324
Copying local files to hdfs:///user/root/tmp/mrjob/word_count.root.20180114.050606.032324/files/...
Running step 1 of 1...
  packageJobJar: [/usr/local/hadoop-2.5.2/tmp/hadoop-unjar2522703497090634857/] [] /tmp/streamjob1355851303293562830.jar tmpDir=null
  Connecting to ResourceManager at liuyazhuang121/192.168.209.121:8032
  Connecting to ResourceManager at liuyazhuang121/192.168.209.121:8032
  Total input paths to process : 1
  number of splits:2
  Submitting tokens for job: job_1515893542122_0003
  Submitted application application_1515893542122_0003
  The url to track the job: http://liuyazhuang121:8088/proxy/application_1515893542122_0003/
  Running job: job_1515893542122_0003
  Job job_1515893542122_0003 running in uber mode : false
   map 0% reduce 0%
   map 33% reduce 0%
   map 100% reduce 0%
   map 100% reduce 100%
  Job job_1515893542122_0003 completed successfully
  Output directory: hdfs://liuyazhuang121:9000/output/hadoop_word
Counters: 49
        File Input Format Counters 
                Bytes Read=323
        File Output Format Counters 
                Bytes Written=262
        File System Counters
                FILE: Number of bytes read=486
                FILE: Number of bytes written=305876
                FILE: Number of large read operations=0
                FILE: Number of read operations=0
                FILE: Number of write operations=0
                HDFS: Number of bytes read=529
                HDFS: Number of bytes written=262
                HDFS: Number of large read operations=0
                HDFS: Number of read operations=9
                HDFS: Number of write operations=2
        Job Counters 
                Data-local map tasks=2
                Launched map tasks=2
                Launched reduce tasks=1
                Total megabyte-seconds taken by all map tasks=23237632
                Total megabyte-seconds taken by all reduce tasks=11787264
                Total time spent by all map tasks (ms)=22693
                Total time spent by all maps in occupied slots (ms)=22693
                Total time spent by all reduce tasks (ms)=11511
                Total time spent by all reduces in occupied slots (ms)=11511
                Total vcore-seconds taken by all map tasks=22693
                Total vcore-seconds taken by all reduce tasks=11511
        Map-Reduce Framework
                CPU time spent (ms)=3150
                Combine input records=0
                Combine output records=0
                Failed Shuffles=0
                GC time elapsed (ms)=149
                Input split bytes=206
                Map input records=1
                Map output bytes=392
                Map output materialized bytes=492
                Map output records=44
                Merged Map outputs=2
                Physical memory (bytes) snapshot=611057664
                Reduce input groups=30
                Reduce input records=44
                Reduce output records=30
                Reduce shuffle bytes=492
                Shuffled Maps =2
                Spilled Records=88
                Total committed heap usage (bytes)=429916160
                Virtual memory (bytes) snapshot=2661163008
        Shuffle Errors
                BAD_ID=0
                CONNECTION=0
                IO_ERROR=0
                WRONG_LENGTH=0
                WRONG_MAP=0
                WRONG_REDUCE=0
Streaming final output from hdfs://liuyazhuang121:9000/output/hadoop_word...
"aaa"   1
"ab"    1
"abc"   1
"adc"   1
"bar"   2
"bbb"   2
"bc"    1
"bec"   1
"by"    1
"ccc"   2
"hadoop"        2
"hello" 2
"home"  2
"iii"   2
"is"    1
"labs"  1
"liuyazhuang"   2
"lyz"   2
"me"    1
"ooo"   2
"python"        2
"see"   1
"test"  2
"welcome"       1
"where" 1
"xxx"   2
"xxyy"  1
"you"   1
"your"  1
"yyy"   2
Removing HDFS temp directory hdfs:///user/root/tmp/mrjob/word_count.root.20180114.050606.032324...
Removing temp directory /tmp/word_count.root.20180114.050606.032324...
结果显示,打印出了每个单词的频次。此时我们输入命令:

hadoop fs -ls /output/hadoop_word
查看生成的文件如下:

[root@liuyazhuang121 source]# hadoop fs -ls /output/hadoop_word 
Found 2 items
-rw-r--r--   1 root supergroup          0 2018-01-14 13:06 /output/hadoop_word/_SUCCESS
-rw-r--r--   1 root supergroup        262 2018-01-14 13:06 /output/hadoop_word/part-00000
此时,我们输入命令:

hadoop fs -cat  /output/hadoop_word/part-00000
查看输出的结果:

[root@liuyazhuang121 source]# hadoop fs -cat  /output/hadoop_word/part-00000
"aaa"   1
"ab"    1
"abc"   1
"adc"   1
"bar"   2
"bbb"   2
"bc"    1
"bec"   1
"by"    1
"ccc"   2
"hadoop"        2
"hello" 2
"home"  2
"iii"   2
"is"    1
"labs"  1
"liuyazhuang"   2
"lyz"   2
"me"    1
"ooo"   2
"python"        2
"see"   1
"test"  2
"welcome"       1
"where" 1
"xxx"   2
"xxyy"  1
"you"   1
"your"  1
"yyy"   2
我们可以看出,输出了正确的结果。

你可能感兴趣的:(Hadoop,python,Hadoop生态,Python)