全文部分引自:http://blog.csdn.net/xiaowei_cqu/article/details/7771760
Mat的常见属性
data uchar型的指针。Mat类分为了两个部分:矩阵头和 指向矩阵部分的指针,data就是指向矩阵数据的指针
dims 矩阵的维度,例如5*6矩阵是二维矩阵,则dims=2,三维矩阵dims=3
rows 矩阵的行数
cols 矩阵的列数
size 矩阵的大小,size(cols,rows),如果矩阵的维数大于2,则是size(-1,-1)
channels 矩阵元素拥有的通道数,例如常见的彩色图像,每一个像素由RGB三部分组成,则channels=3
和Mat相关的几个数据类型
type
表示了矩阵中元素的类型以及矩阵的通道个数,它是一系列的预定义的变量,其命名规则为CV_(位数)+(数据类型)+(通道数)。具体的有以下值:
这里U(unsigned integer)表示的是无符号整数,S(signed integer),F(float)是浮点数。
例如:CV_16UC2,表示的是元素类型是一个16位的无符号整数,通道为2. C1,C2,C3,C4则表示通道是1,2,3,4
type一般是在创建Mat对象时设定,如果要取得Mat的元素类型,则无需使用type,使用下面的depth
depth
矩阵中元素的一个通道的数据类型,这个值和type是相关的。例如 type为 CV_16SC2,一个2通道的16位的有符号整数。那么,depth则是CV_16S。depth也是一系列的预定义值,
将type的预定义值去掉通道信息就是depth值:
CV_8U CV_8S CV_16U CV_16S CV_32S CV_32F CV_64F
elemSize
矩阵一个元素占用的字节数,例如:type是CV_16SC3,那么elemSize = 3 * 16 / 8 = 6 bytes
elemSize1
矩阵元素一个通道占用的字节数,例如:type是CV_16CS3,那么elemSize1 = 16 / 8 = 2 bytes = elemSize / channels
访问图像中的像素
高效的方法:C操作符【】
最快的是直接用C风格的内存访问操作符【】来访问:
Mat& ScanImageAndReduceC(Mat& I, const uchar* const table)
{
// accept only char type matrices
CV_Assert(I.depth() != sizeof(uchar));
int channels = I.channels();
int nRows = I.rows ;
int nCols = I.cols* channels;
if (I.isContinuous())
{
nCols *= nRows;
nRows = 1;
}
int i,j;
uchar* p;
for( i = 0; i < nRows; ++i)
{
p = I.ptr<uchar>(i);
for ( j = 0; j < nCols; ++j)
{
p[j] = table[p[j]];
}
}
return I;
}
一般情况 isContinous为true,运行不会出错,但你可以注释掉那个if,会有访问越界的问题。
这种访问形式就是在每行定义一个指针,然后在内存上直接连续访问。如果整个数组在内存上都是连续存放的,那么只需要定义一个指针就可以访问所有的数据!如单通道的灰度图访问方式如下:
uchar* p = I.data;
for( unsigned int i =0; i < ncol*nrows; ++i)
*p++ = table[*p];
安全的方法:迭代器iterator
相比用指针直接访问可能出现越界问题,迭代器绝对是非常安全的方法:
Mat& ScanImageAndReduceIterator(Mat& I, const uchar* const table)
{
// accept only char type matrices
CV_Assert(I.depth() != sizeof(uchar));
const int channels = I.channels();
switch(channels)
{
case 1:
{
MatIterator_ it, end;
for( it = I.begin(), end = I.end<uchar>(); it != end; ++it)
*it = table[*it];
break;
}
case 3:
{
MatIterator_ it, end;
for( it = I.begin(), end = I.end<Vec3b>(); it != end; ++it)
{
(*it)[0] = table[(*it)[0]];
(*it)[1] = table[(*it)[1]];
(*it)[2] = table[(*it)[2]];
}
}
}
return I;
}
这里我们只定义了一个迭代器,用了一个for循环,这是因为在OpenCV里迭代器会访问每一列然后自动跳到下一行,不用管在内存上是否isContinous。另外要注意的是在三通道图像中我们定义的是 格式的迭代器,如果定义成uchar,则只能访问到B即蓝色通道的值。
这种方式虽然安全,但是挺慢的,一会儿就知道了。
更慢的方法:动态地址计算
这种方法在需要连续扫描所有点的应用时并不推荐,因为它更实用与随机访问。这种方法最基本的用途是访问任意的某一行某一列:
Mat& ScanImageAndReduceRandomAccess(Mat& I, const uchar* const table)
{
// accept only char type matrices
CV_Assert(I.depth() != sizeof(uchar));
const int channels = I.channels();
switch(channels)
{
case 1:
{
for( int i = 0; i < I.rows; ++i)
for( int j = 0; j < I.cols; ++j )
I.at<uchar>(i,j) = table[I.at<uchar>(i,j)];
break;
}
case 3:
{
Mat_ _I = I;
for( int i = 0; i < I.rows; ++i)
for( int j = 0; j < I.cols; ++j )
{
_I(i,j)[0] = table[_I(i,j)[0]];
_I(i,j)[1] = table[_I(i,j)[1]];
_I(i,j)[2] = table[_I(i,j)[2]];
}
I = _I;
break;
}
}
return I;
}
因为这种方法是为随机访问设计的,所以真的是奇慢无比。。。