作为菜鸟,先贴上参考博文:
1.极小极大算法
2.<
3.《PC游戏编程-人机博弈》-作者陈其,王小春
本文目录:
直观图解
伪代码
习题实战
适用范围:极小极大算法常用于零和博弈游戏中,零和博弈指参与博弈的各方,在严格竞争下,一方的收益必然意味着另一方的损失,博弈各方的收益和损失相加总和永远为“零”,双方不存在合作的可能。博弈游戏,目的是寻找最优的方案使得自己能够利益最大化。
先来个直观理解
极大极小算法:
基本思想就是假设自己足够聪明,总是选择最利于自己(A)的方案,而对手同样聪明,总是选择最不利与对方即A方的方案。
设:正方形代表自己(A),圆代表对手(B),节点的每个孩子节点代表一个候选方案。
上图中显示了所有候选方案。让我们如下分析:(注意:根节点为当前局面,某一结点的子节点为下一步走法产生的局面。图中的所有数字都是A的利益值,可以由估值函数得出,越大越有利于A)
假设A选择第一个方案,B有两个候选方案,B为了使得A利益最小化,所有在7和3中选择了3,所以A只能获得3。
假设A选择第二个方案,B只有一个选择,A最终可以获得15。
假设A选择第三个方案,B有4个可选方案,为了使得A利益最小,B选择第一个方案,则A只能获得利益1。
A为了使得自己利益最大,所以A会选择第二个方案,即获得利益15。
从上图可以看出,B总是选择候选方案中的最小值,而A总是选择候选方案中的最大值,极小极大的名字也就源于此。该算法使用深度优先搜索(Depth First Search)遍历决策树来填充树中间节点的利益值,叶子节点的利益值通常是通过一个利益评估函数算
有时候为了得到较好的效果不得不增加搜索树的深度,这样就增加了大量的计算。为了加快计算速度,减少计算量,可以使用Alpha-Beta剪枝算法(Alpha Beta Pruning)对搜索树进行剪枝。因为搜索树中有很多分支不需要遍历。
Alpha-Beta剪枝算法(Alpha Beta Pruning)
Alpha-Beta剪枝用于裁剪搜索树中没有意义的不需要搜索的树枝,以提高运算速度。
假设α为下界,β为上界,对于α ≤ N ≤ β:
若 α ≤ β 则N有解。
若 α > β 则N无解。
下面通过一个例子来说明Alpha-Beta剪枝算法。
上图为整颗搜索树。这里使用极小极大算法配合Alpha-Beta剪枝算法,正方形为自己(A),圆为对手(B)。
初始设置α为负无穷大,β为正无穷大。
对于B(第四层)而已,尽量使得A获利最小,因此当遇到使得A获利更小的情况,则需要修改β。这里3小于正无穷大,所以β修改为3。
(第四层)这里17大于3,不用修改β。
对于A(第三层)而言,自己获利越大越好,因此遇到利益值大于α的时候,需要α进行修改,这里3大于负无穷大,所以α修改为3
B(第四层)拥有一个方案使得A获利只有2,α=3, β=2, α > β, 说明A(第三层)只要选择第二个方案, 则B必然可以使得A的获利少于A(第三层)的第一个方案,这样就不再需要考虑B(第四层)的其他候选方案了,因为A(第三层)根本不会选取第二个方案,多考虑也是浪费.
B(第二层)要使得A利益最小,则B(第二层)的第二个方案不能使得A的获利大于β, 也就是3. 但是若B(第二层)选择第二个方案, A(第三层)可以选择第一个方案使得A获利为15, α=15, β=3, α > β, 故不需要再考虑A(第三层)的第二个方案, 因为B(第二层)不会选择第二个方案.
A(第一层)使自己利益最大,也就是A(第一层)的第二个方案不能差于第一个方案, 但是A(第三层)的一个方案会导致利益为2, 小于3, 所以A(第三层)不会选择第一个方案, 因此B(第四层)也不用考虑第二个方案.
当A(第三层)考虑第二个方案时,发现获得利益为3,和A(第一层)使用第一个方案利益一样.如果根据上面的分析A(第一层)优先选择了第一个方案,那么B不再需要考虑第二种方案,如果A(第一层)还想进一步评估两个方案的优劣的话, B(第二层)则还需要考虑第二个方案,若B(第二层)的第二个方案使得A获利小于3,则A(第一层)只能选择第一个方案,若B(第二层)的第二个方案使得A获利大于3,则A(第一层)还需要根据其他因素来考虑最终选取哪种方案.
再来看看伪代码
极大极小算法伪代码:
int MaxMin(position p,int d)
{
int bestvalue,value;
if(game over) //检查游戏是否结束
return evaluation(p);// 游戏结束,返回估值
if(depth<=0) //检查是否是叶子节点
return evaluation(p);//叶子节点,返回估值
if(max) //极大值点
bestvalue=-INFINTY;
else //极小值点
bestvalue=INFINTY;
for(each possibly move m)
{
MakeMove(m); //走棋
value=MaxMin(p,d-1);
UnMakeMove(m); //恢复当前局面
if(max)
bestvalue=max(value,bestvalue);//取最大值
else
bestvalue=min(value,bestvalue);//取最小值
}
return bestvalue;
}
// end of MaxMin algorithm
将Alpha剪枝和Beta剪枝加入MaxMin搜索就得到AlphaBeta搜索,AlphaBeta搜索的伪代码如下:
//伪代码,Alpha剪枝和Beta剪枝+MaxMin搜索
int AlphaBeta(nPlay,nAlpha,nBeta)
{
if(game over)
return Eveluation; //胜负已分,返回估值
if(nPly==0)
return Eveluation; //叶子节点返回估值
if(Is Min Node) //判断 节点类型
{ // 极小值节点
for(each possible move m)
{
make move m; //生成新节点
score=AlphaBeta(nPly-1,nAlpha,nBeta)//递归搜索子节点
unmake move m;//撤销搜索过的节点
if(score { nBeta=score;//取极小值 if(nAlpha>=nBeta) return nAlpha;//alpha剪枝,抛弃后继节点 } } return nBeta;//返回最小值 } else {//取极大值的节点 for(each possible move m) { make move m; //生成新节点 score=AlphaBeta(nPly-1,nAlpha,nBeta)//递归搜索子节点 unmake move m;//撤销搜索过的节点 if(score>nAlpha) { nAlpha=score;//取极小值 if(nAlpha>=nBeta) return nBeta;//nBeta剪枝,抛弃后继节点 } } return nAlpha;//返回最小值 } } //end of AlphaBeta pseudocode 来点真的 习题链接,真枪实战 1.三角点格棋 2.Stake Your Claim 3.Find the Winning Move