Spark组件和术语定义

Spark组件和术语定义_第1张图片

  • Application:Spark Application的概念和Hadoop MapReduce中的类似,指的是用户编写的Spark应用程序,包含了一个Driver 功能的代码和分布在集群中多个节点上运行的Executor代码;
  • Driver:Spark中的Driver即运行上述Application的main()函数并且创建SparkContext,其中创建SparkContext的目的是为了准备Spark应用程序的运行环境。在Spark中由SparkContext负责和ClusterManager通信,进行资源的申请、任务的分配和监控等;当Executor部分运行完毕后,Driver负责将SparkContext关闭。通常用SparkContext代表Drive;
  • Executor:Application运行在Worker 节点上的一个进程,该进程负责运行Task,并且负责将数据存在内存或者磁盘上,每个Application都有各自独立的一批Executor。在Spark on Yarn模式下,其进程名称为CoarseGrainedExecutorBackend,类似于Hadoop MapReduce中的YarnChild。一个CoarseGrainedExecutorBackend进程有且仅有一个executor对象,它负责将Task包装成taskRunner,并从线程池中抽取出一个空闲线程运行Task。每个CoarseGrainedExecutorBackend能并行运行Task的数量就取决于分配给它的CPU的个数了;
  • Cluster Manager:指的是在集群上获取资源的外部服务,目前有:

    • Standalone:Spark原生的资源管理,由Master负责资源的分配;
    • Hadoop Yarn:由YARN中的ResourceManager负责资源的分配;
  • Worker:集群中任何可以运行Application代码的节点,类似于YARN中的NodeManager节点。在Standalone模式中指的就是通过Slave文件配置的Worker节点,在Spark on Yarn模式中指的就是NodeManager节点;
  • 作业(Job):包含多个Task组成的并行计算,往往由Spark Action催生,一个JOB包含多个RDD及作用于相应RDD上的各种Operation;
  • 阶段(Stage):每个Job会被拆分很多组Task,每组任务被称为Stage,也可称TaskSet,一个作业分为多个阶段,每一个stage的分割点是action。比如一个job是:(transformation1 -> transformation1 -> action1 -> transformation3 -> action2),这个job就会被分为两个stage,分割点是action1和action2。
  • 任务(Task): 被送到某个Executor上的工作任务;
  • partition: 理解spark中partition概念,需要和hdfs中的block做一下类比。hdfs中的block是分布式存储的最小单元,类似于盛放文件的盒子,一个文件可能要占多个盒子,但一个盒子里的内容只可能来自同一份文件。假设block设置为128M,你的文件是250M,那么这份文件占3个block(128+128+2)。这样的设计虽然会有一部分磁盘空间的浪费,但是整齐的block大小,便于快速找到、读取对应的内容。(p.s. 考虑到hdfs冗余设计,默认三份拷贝,实际上3*3=9个block的物理空间。)
    spark中的partition 是弹性分布式数据集RDD的最小单元,RDD是由分布在各个节点上的partition 组成的。partition 是指的spark在计算过程中,生成的数据在计算空间内最小单元,同一份数据(RDD)的partition 大小不一,数量不定,是根据application里的算子和最初读入的数据分块数量决定的,这也是为什么叫“弹性分布式”数据集的原因之一。总结:block位于存储空间、partition 位于计算空间,block的大小是固定的、partition 大小是不固定的,block是有冗余的、不会轻易丢失,partition(RDD)没有冗余设计、丢失之后重新计算得到(这段文字来自知乎)

Spark组件和术语定义_第2张图片

你可能感兴趣的:(bigData,spark,大数据学习)