使用beeline不能truncate table表

问题:使用beeline不能truncate table表

/etc/hive/conf.cloudera.hive/hive-site.xml修改参数在beeline里不起作用

 

在truncate table 表时报下面的错误:

0: jdbc:hive2://172.16.29.10:10000/dw_test> truncate table customer_dim; 

INFO  : Compiling command(queryId=hive_20180522103030_f8107b37-4f71-4868-9f9b-61aa01657e0e): truncate table customer_dim

INFO  : Semantic Analysis Completed

INFO  : Returning Hive schema: Schema(fieldSchemas:null, properties:null)

INFO  : Completed compiling command(queryId=hive_20180522103030_f8107b37-4f71-4868-9f9b-61aa01657e0e); Time taken: 0.019 seconds

INFO  : Executing command(queryId=hive_20180522103030_f8107b37-4f71-4868-9f9b-61aa01657e0e): truncate table customer_dim

INFO  : Starting task [Stage-0:DDL] in serial mode

ERROR : FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. Exception while processing

INFO  : Completed executing command(queryId=hive_20180522103030_f8107b37-4f71-4868-9f9b-61aa01657e0e); Time taken: 0.06 seconds

Error: Error while processing statement: FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. Exception while processing (state=08S01,code=1)

 

 

 

原因:

用beeline命令执行在hive命令行创建的库和表时,beeline的修改事务的参数不起作用

 

解决:

用beelin命令执行事务的操作 beeline创建的表。

 

如:

首先,建库表用beeline

beeline -n hdfs -p hive -u jdbc:hive2://172.16.29.10:10000 -f dw.sql

 

然后,数据初始化时也应该用相同的命令

beeline -n hdfs -p hive -u jdbc:hive2://172.16.29.10:10000/dw_test -f init_etl.sql

 

dw.sql语句内容:

drop database if exists dw_test cascade;   

create database dw_test; 

 

use dw_test; 

-- 建立日期维度表 

create table date_dim (   

    date_sk int comment 'surrogate key', 

    date date comment 'date,yyyy-mm-dd', 

    month tinyint comment 'month', 

    month_name varchar(9) comment 'month name', 

    quarter tinyint comment 'quarter', 

    year smallint comment 'year' 

comment 'date dimension table' 

row format delimited fields terminated by ',' 

stored as textfile;

 

-- 建立客户维度表   

create table customer_dim (   

    customer_sk int comment 'surrogate key',   

    customer_number int comment 'number',   

    customer_name varchar(50) comment 'name',   

    customer_street_address varchar(50) comment 'address',   

    customer_zip_code int comment 'zipcode',   

    customer_city varchar(30) comment 'city',   

    customer_state varchar(2) comment 'state', 

    version int comment 'version', 

    effective_date date comment 'effective date',   

    expiry_date date comment 'expiry date'   

clustered by (customer_sk) into 8 buckets   

stored as orc tblproperties ('transactional'='true'); 

   

-- 建立产品维度表   

create table product_dim (   

    product_sk int comment 'surrogate key',   

    product_code int comment 'code',   

    product_name varchar(30) comment 'name',   

    product_category varchar(30) comment 'category', 

    version int comment 'version', 

    effective_date date comment 'effective date',   

    expiry_date date comment 'expiry date'   

clustered by (product_sk) into 8 buckets   

stored as orc tblproperties ('transactional'='true'); 

   

-- 建立订单维度表   

create table order_dim (   

    order_sk int comment 'surrogate key',   

    order_number int comment 'number',  

    version int comment 'version', 

    effective_date date comment 'effective date', 

    expiry_date date comment 'expiry date'   

clustered by (order_sk) into 8 buckets   

stored as orc tblproperties ('transactional'='true'); 

   

-- 建立销售订单事实表   

create table sales_order_fact (   

    order_sk int comment 'order surrogate key',   

    customer_sk int comment 'customer surrogate key',   

    product_sk int comment 'product surrogate key',   

    order_date_sk int comment 'date surrogate key',   

    order_amount decimal(10 , 2 ) comment 'order amount'  

clustered by (order_sk) into 8 buckets   

stored as orc tblproperties ('transactional'='true');

 

 

 

 

 

set hive.support.concurrency = true;

set hive.enforce.bucketing = true;

set hive.exec.dynamic.partition.mode = nonstrict;

set hive.txn.manager = org.apache.hadoop.hive.ql.lockmgr.DbTxnManager;

set hive.compactor.initiator.on = true;

set hive.compactor.worker.threads = 1;

 

 

init_etl.sql语句内容:

set hive.support.concurrency=true; 

set hive.exec.dynamic.partition.mode=nonstrict; 

set hive.txn.manager=org.apache.hadoop.hive.ql.lockmgr.DbTxnManager; 

set hive.compactor.initiator.on=true; 

set hive.compactor.worker.threads=1;

 

use dw_test; 

-- 清空表 

truncate table customer_dim; 

truncate table product_dim; 

truncate table order_dim; 

truncate table sales_order_fact; 

-- 装载客户维度表 

insert into customer_dim 

select 

  row_number() over (order by t1.customer_number) + t2.sk_max, 

t1.customer_number, t1.customer_name, t1.customer_street_address,

t1.customer_zip_code, t1.customer_city, t1.customer_state, 1,

'2016-03-01', '2200-01-01' 

from rds.customer t1

cross join (select coalesce(max(customer_sk),0) sk_max

from customer_dim) t2;  

-- 装载产品维度表 

insert into product_dim 

select 

  row_number() over (order by t1.product_code) + t2.sk_max,

product_code, product_name, product_category, 1,

'2016-03-01', '2200-01-01' 

from rds.product t1

cross join (select coalesce(max(product_sk),0) sk_max

from product_dim) t2; 

-- 装载订单维度表 

insert into order_dim   

select   

row_number() over (order by t1.order_number) + t2.sk_max,

order_number, 1, order_date, '2200-01-01'   

from rds.sales_order t1

cross join (select coalesce(max(order_sk),0) sk_max from order_dim) t2;   

-- 装载销售订单事实表 

insert into sales_order_fact 

select  order_sk, customer_sk, product_sk, date_sk, order_amount 

from rds.sales_order a, order_dim b, customer_dim c,

product_dim d, date_dim e 

where  a.order_number = b.order_number 

and a.customer_number = c.customer_number 

and a.product_code = d.product_code 

and to_date(a.order_date) = e.date; 

 

 

 

你可能感兴趣的:(Hive)