package com.kailong.lock;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Date;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.LockSupport;
import sun.misc.Unsafe;
/**
* Created by Administrator on 2017/4/20.
* 抽象的队列式的同步器
* 不同的自定义同步器争用共享资源的方式也不同。自定义同步器在实现时只需要实现共享资源state的获取与释放方式即可,
* 至于具体线程等待队列的维护(如获取资源失败入队/唤醒出队等),AQS已经在顶层实现好了。
* 自定义同步器实现时主要实现以下几种方法:
isHeldExclusively():该线程是否正在独占资源。只有用到condition才需要去实现它。
tryAcquire(int):独占方式。尝试获取资源,成功则返回true,失败则返回false。
tryRelease(int):独占方式。尝试释放资源,成功则返回true,失败则返回false。
tryAcquireShared(int):共享方式。尝试获取资源。负数表示失败;0表示成功,但没有剩余可用资源;正数表示成功,且有剩余资源。
tryReleaseShared(int):共享方式。尝试释放资源,成功则返回true,失败则返回false。
同步类在实现时一般都将自定义同步器(sync)定义为内部类,供自己使用;而同步类自己(Mutex)则实现某个接口,对外服务。当然
,接口的实现要直接依赖sync,它们在语义上也存在某种对应关系!!
而sync只用实现资源state的获取-释放方式tryAcquire-tryRelelase,至于线程的排队、等待、唤醒等,
上层的AQS都已经实现好了,我们不用关心。比如自己实现可重入独占锁 接下来将会分析源码 让大家理解这个过程
*/
public class AbstractQueuedSynchronizer extends AbstractOwnableSynchronizer implements java.io.Serializable{
private static final long serialVersionUID = 7373984972572414691L;//序列化id
protected AbstractQueuedSynchronizer() { }//无参数改造方法
static final class Node{
/**
* 指示节点正在等待共享模式的标记
*/
static final Node SHARED = new Node();
/**
*指示节点正在等待独占模式的标记
*/
static final Node EXCLUSIVE = null;
/**
*waitStatus值指示线程已取消
*/
static final int CANCELLED = 1;
/**
*waitStatus值表示后续线程需要开启
*/
static final int SIGNAL = -1;
/**
*waitStatus值表示线程正在等待状态
*/
static final int CONDITION = -2;
/**
*值指示下一个acquireShared应无条件地传播
*/
static final int PROPAGATE = -3;
/**
* 等待状态
*/
volatile int waitStatus;
//前驱
volatile Node prev;
//后继
volatile Node next;
//线程
volatile Thread thread;
//下一个等待
Node nextWaiter;
/**
* 如果节点在共享模式下等待,则返回true。
* @return
*/
final boolean isShared() {
return nextWaiter == SHARED;
}
/**
* 返回上一个节点,如果为null,则抛出NullPointerException。
*当前辈不能为null时使用。 空检查可以
*被淘汰,但目前是为了帮助虚拟机
* @返回此节点的前身
* @return
* @throws NullPointerException
*/
final Node predecessor() throws NullPointerException {
Node p = prev;
if (p == null)
throw new NullPointerException();
else
return p;
}
Node() { // 用于建立初始头或共享标记
}
Node(Thread thread, Node mode) { //Used by addWaiter
this.nextWaiter = mode;
this.thread = thread;
}
Node(Thread thread, int waitStatus) { // 按条件使用
this.waitStatus = waitStatus;
this.thread = thread;
}
}
private transient volatile Node head;
private transient volatile Node tail;
private volatile int state;
protected final int getState() {
return state;
}
protected final void setState(int newState) {
state = newState;
}
protected final boolean compareAndSetState(int expect, int update) {
return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
}
static final long spinForTimeoutThreshold = 1000L;
/**
* 此方法用于将node加入队尾
* @param node
* @return
*/
private Node enq(final Node node) {
//CAS"自旋",直到成功加入队尾 链表操作 加入节点 分两种情况 一如果链表为空则设置为头结点 否则添加即可
//AtomicInteger.getAndIncrement()函数源码,之前分析的cas机制如此,CAS自旋volatile变量
for (;;) {
Node t = tail;
if (t == null) { // 必须初始化
if (compareAndSetHead(new Node()))
tail = head;
} else {
node.prev = t;
if (compareAndSetTail(t, node)) {
t.next = node;
return t;
}
}
}
}
/**
* addWaiter()将该线程加入等待队列的尾部,并标记为独占模式;
* 此方法用于将当前线程加入到等待队列的队尾,并返回当前线程所在的结点
* @param mode
* @return
*/
private Node addWaiter(Node mode) {
// //以给定模式构造结点。mode有两种:EXCLUSIVE(独占)和SHARED(共享)
Node node = new Node(Thread.currentThread(), mode);
// //尝试快速方式直接放到队尾。 这里只是很简单的链表操作只不过多线程 因此需要用cas机制
Node pred = tail;//头结点
if (pred != null) {
node.prev = pred;
if (compareAndSetTail(pred, node)) {//利用cas机制修改节点 因为多线程操作 所以利用cas保证线程安全
pred.next = node;
return node;
}
}
//上一步失败则通过enq入队。
enq(node);
return node;
}
private void setHead(Node node) {
head = node;
node.thread = null;
node.prev = null;
}
/**
* 此方法用于唤醒等待队列中下一个线程。下面是源码:
* @param node
*/
private void unparkSuccessor(Node node) {
int ws = node.waitStatus;//这里,node一般为当前线程所在的结点。
if (ws < 0)
compareAndSetWaitStatus(node, ws, 0);//置零当前线程所在的结点状态,允许失败。
Node s = node.next;
if (s == null || s.waitStatus > 0) {//如果为空或已取消
s = null;
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0)//从这里可以看出,<=0的结点,都是还有效的结点。
s = t;
}
if (s != null)
LockSupport.unpark(s.thread);//唤醒
}
/**
* 释放 还是cas机制 一个大的自旋 然后修改即可
*/
private void doReleaseShared() {
for (;;) {
Node h = head;
if (h != null && h != tail) {
int ws = h.waitStatus;
if (ws == Node.SIGNAL) {
if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
continue; // loop to recheck cases
unparkSuccessor(h);//唤醒后继
}
else if (ws == 0 &&
!compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
continue; // loop on failed CAS
}
if (h == head) // loop if head changed
break;
}
}
/**
* 此方法在setHead()的基础上多了一步,就是自己苏醒的同时,如果条件符合(
* 比如还有剩余资源),还会去唤醒后继结点,毕竟是共享模式!
doReleaseShared()我们留着下一小节的releaseShared()里来讲。
* @param node
* @param propagate
*/
private void setHeadAndPropagate(Node node, int propagate) {
Node h = head;
setHead(node);//head指向自己
//如果还有剩余量,继续唤醒下一个邻居线程
if (propagate > 0 || h == null || h.waitStatus < 0 ||
(h = head) == null || h.waitStatus < 0) {
Node s = node.next;
if (s == null || s.isShared())
doReleaseShared();
}
}
private void cancelAcquire(Node node) {
if (node == null)
return;
node.thread = null;
Node pred = node.prev;
while (pred.waitStatus > 0)
node.prev = pred = pred.prev;
Node predNext = pred.next;
node.waitStatus = Node.CANCELLED;
if (node == tail && compareAndSetTail(node, pred)) {
compareAndSetNext(pred, predNext, null);
} else {
int ws;
if (pred != head &&
((ws = pred.waitStatus) == Node.SIGNAL ||
(ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) &&
pred.thread != null) {
Node next = node.next;
if (next != null && next.waitStatus <= 0)
compareAndSetNext(pred, predNext, next);
} else {
unparkSuccessor(node);
}
node.next = node; // help GC
}
}
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
int ws = pred.waitStatus;//拿到前驱的状态
if (ws == Node.SIGNAL)
return true;// //如果已经告诉前驱拿完号后通知自己一下,那就可以安心休息了
if (ws > 0) {
/*
8 * 如果前驱放弃了,那就一直往前找,直到找到最近一个正常等待的状态,并排在它的后边。
9 * 注意:那些放弃的结点,由于被自己“加塞”到它们前边,它们相当于形成一个无引用链,注意垃圾回收
会进行可达性分析,稍后就会被保安大叔赶走了(GC回收)!
10 */
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
} else {
//如果前驱正常,那就把前驱的状态设置成SIGNAL,告诉它拿完号后通知自己一下。有可能失败,
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
}
return false;
}
static void selfInterrupt() {
Thread.currentThread().interrupt();
}
/**
* 如果线程找好安全休息点后,那就可以安心去休息了。此方法就是让线程去休息,真正进入等待状态。
* @return
*/
private final boolean parkAndCheckInterrupt() {
LockSupport.park(this);
return Thread.interrupted();
}
/**
* acquireQueued()使线程在等待队列中获取资源,一直获取到资源后才返回。
* 如果在整个等待过程中被中断过,则返回true,否则返回false。
* 进入等待状态休息,直到其他线程彻底释放资源后唤醒自己,自己再拿到资源,然后就可以去干自己想干的事了
* 在等待队列中排队拿号
* @param node
* @param arg
* @return
*/
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;//标记是否成功拿到资源
try {
boolean interrupted = false;//标记等待过程中是否被中断过
for (;;) {//加入自旋 不断操作
final Node p = node.predecessor();//拿到前驱
if (p == head && tryAcquire(arg)) {////拿到资源后,将head指向该结点。所以head所指的标杆结点,就是当前获取到资源的那个结点或null。
setHead(node);
p.next = null; // help GC 这里帮助垃圾回收器回收节点
failed = false;//返回等待过程中是否被中断过
return interrupted;
}
// //如果自己可以休息了,就进入waiting状态,直到被unpark()
/**
* 结点进入队尾后,检查状态,找到安全休息点;
调用park()进入waiting状态,等待unpark()或interrupt()唤醒自己;
被唤醒后,看自己是不是有资格能拿到号。如果拿到,head指向当前结点,
并返回从入队到拿到号的整个过程中是否被中断过;如果没拿到,继续流程1。
*/
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())//检查状态 接下来将会进行检查状态分析 看看线程是否进入waiting状态
interrupted = true;////如果等待过程中被中断过,哪怕只有那么一次,就将interrupted标记为true
}
} finally {
if (failed)
cancelAcquire(node);
}
}
private void doAcquireInterruptibly(int arg)
throws InterruptedException {
final Node node = addWaiter(Node.EXCLUSIVE);
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}
private boolean doAcquireNanos(int arg, long nanosTimeout)
throws InterruptedException {
if (nanosTimeout <= 0L)
return false;
final long deadline = System.nanoTime() + nanosTimeout;
final Node node = addWaiter(Node.EXCLUSIVE);
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return true;
}
nanosTimeout = deadline - System.nanoTime();
if (nanosTimeout <= 0L)
return false;
if (shouldParkAfterFailedAcquire(p, node) &&
nanosTimeout > spinForTimeoutThreshold)
LockSupport.parkNanos(this, nanosTimeout);
if (Thread.interrupted())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}
/**
* 此方法用于将当前线程加入等待队列尾部休息,直到其他线程释放资源唤醒自己,
* 自己成功拿到相应量的资源后才返回。下面是doAcquireShared()的源码:
* 有木有觉得跟acquireQueued()很相似?对,其实流程并没有太大区别。
* 只不过这里将补中断的selfInterrupt()放到doAcquireShared()里了,
* 而独占模式是放到acquireQueued()之外,其实都一样. 跟独占模式比,
* 还有一点需要注意的是,这里只有线程是head.next时(“老二”),
* 才会去尝试获取资源,有剩余的话还会唤醒之后的队友。那么问题就来了,
* 假如老大用完后释放了5个资源,而老二需要6个,老三需要1个,老四需要2个。
* 因为老大先唤醒老二,老二一看资源不够自己用继续park(),也更不会去唤醒老三和老四了。
* 独占模式,同一时刻只有一个线程去执行,这样做未尝不可;但共享模式下,
* 多个线程是可以同时执行的,现在因为老二的资源需求量大,
* 而把后面量小的老三和老四也都卡住了。
* @param arg
*/
private void doAcquireShared(int arg) {
final Node node = addWaiter(Node.SHARED);//加入队列尾部
boolean failed = true;//是否成功标志
try {
boolean interrupted = false;//等待过程中是否被中断过的标志
for (;;) {
final Node p = node.predecessor();//前驱
if (p == head) {
int r = tryAcquireShared(arg);//如果到head的下一个,因为head是拿到资源的线程,此时node被唤醒,
// 很可能是head用完资源来唤醒自己的,尝试获取资源
if (r >= 0) {
setHeadAndPropagate(node, r);//将head指向自己,还有剩余资源可以再唤醒之后的线程
p.next = null; // help GC
if (interrupted)
selfInterrupt();//如果等待过程中被打断过,此时将中断补上。
failed = false;
return;
}
}
//判断状态,寻找安全点,进入waiting状态,等着被unpark()或interrupt()
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
private void doAcquireSharedInterruptibly(int arg)
throws InterruptedException {
final Node node = addWaiter(Node.SHARED);
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor();
if (p == head) {
int r = tryAcquireShared(arg);
if (r >= 0) {
setHeadAndPropagate(node, r);
p.next = null; // help GC
failed = false;
return;
}
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}
private boolean doAcquireSharedNanos(int arg, long nanosTimeout)
throws InterruptedException {
if (nanosTimeout <= 0L)
return false;
final long deadline = System.nanoTime() + nanosTimeout;
final Node node = addWaiter(Node.SHARED);
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor();
if (p == head) {
int r = tryAcquireShared(arg);
if (r >= 0) {
setHeadAndPropagate(node, r);
p.next = null; // help GC
failed = false;
return true;
}
}
nanosTimeout = deadline - System.nanoTime();
if (nanosTimeout <= 0L)
return false;
if (shouldParkAfterFailedAcquire(p, node) &&
nanosTimeout > spinForTimeoutThreshold)
LockSupport.parkNanos(this, nanosTimeout);
if (Thread.interrupted())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}
/**
* tryAcquire()尝试直接去获取资源,如果成功则直接返回;
* 此方法尝试去获取独占资源。如果获取成功,则直接返回true,否则直接返回false。
* 这也正是tryLock()的语义,当然不仅仅只限于tryLock()。如下是tryAcquire()的源码:
* 至于为甚这里直接抛出异常因为AQS只是一个框架,具体资源的获取/释放方式交由自定义同步器去实现,之所以没有抽象是因为
* 只是抢占锁 该框架还有共享锁的定义 所以写成抽象不方便开发者书写。
* @param arg
* @return
*/
protected boolean tryAcquire(int arg) {
throw new UnsupportedOperationException();
}
/**
*
* @param arg
* @return
* 跟tryAcquire()一样,这个方法是需要独占模式的自定义同步器去实现的。正常来说,tryRelease()都会成功的,因为这是独占模式,该线程来释放资源,那么它肯定已经拿到独占资源了,直接减掉相应量的资源即可(state-=arg),也不需要考虑线程安全的问题。但要注意它的返回值,上面已经提到了,release()是根据tryRelease()的返回值来判断该线程是否已经完成释放掉资源了!所以自义定同步器在实现时,
* 如果已经彻底释放资源(state=0),要返回true,否则返回false 和上面的设计理念一样
* 这个函数并不复杂。一句话概括:用unpark()唤醒等待队列中最前边的那个未放弃线程,这里我们也用s来表示吧。此时,再和acquireQueued()联系起来,s被唤醒后,进入if (p == head && tryAcquire(arg))的判断(即使p!=head也没关系,它会再进入shouldParkAfterFailedAcquire()寻找一个安全点。这里既然s已经是等待队列中最前边的那个未放弃线程了,那么通过shouldParkAfterFailedAcquire()的调整,s也必然会跑到head的next结点,下一次自旋p==head就成立啦),然后s把自己设置成head标杆结点,表示自己已经获取到资源了,
* acquire()也返回了!!release()是独占模式下线程释放共享资源的顶层入口。它会释放指定量的资源,如果彻底释放了(即state=0),它会唤醒等待队列里的其他线程来获取资源。
*/
protected boolean tryRelease(int arg) {
throw new UnsupportedOperationException();
}
/**
* @param arg
* @return
*/
protected int tryAcquireShared(int arg) {
throw new UnsupportedOperationException();
}
protected boolean tryReleaseShared(int arg) {
throw new UnsupportedOperationException();
}
protected boolean isHeldExclusively() {
throw new UnsupportedOperationException();
}
/**
* 此方法是独占模式下线程获取共享资源的顶层入口。如果获取到资源,线程直接返回,否则进入等待队列,直到获取到资源为止,且整个过程忽略中断的影响。这也正是lock()的语义,
* 当然不仅仅只限于lock()。获取到资源后,线程就可以去执行其临界区代码了.调用自定义同步器的tryAcquire()尝试直接去获取资源,如果成功则直接返回;
没成功,则addWaiter()将该线程加入等待队列的尾部,并标记为独占模式;acquireQueued()使线程在等待队列中休息,有机会时(轮到自己,会被unpark())会去尝试获取资源。获取到资源后才返回。如果在整个等待过程中被中断过,则返回true,否则返回false。
如果线程在等待过程中被中断过,它是不响应的。只是获取资源后才再进行自我中断selfInterrupt(),将中断补上。
* @param arg
*/
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
public final void acquireInterruptibly(int arg)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
if (!tryAcquire(arg))
doAcquireInterruptibly(arg);
}
public final boolean tryAcquireNanos(int arg, long nanosTimeout)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
return tryAcquire(arg) ||
doAcquireNanos(arg, nanosTimeout);
}
/**
* 释放
* @param arg
* @return
*/
public final boolean release(int arg) {
if (tryRelease(arg)) {//它调用tryRelease()来释放资源。有一点需要注意的是,它是根据tryRelease()的返回值来判断该线程是否已经完成释放掉资源了!所以自定义同步器在设计tryRelease()的时候要明确这一点!!
Node h = head;//找到头结点
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);//唤醒等待队列里的下一个线程
return true;
}
return false;
}
/**
* 此方法是共享模式下线程获取共享资源的顶层入口。它会获取指定量的资源,获取成功则直接返回,获取失败则进入等待队列,
* 直到获取到资源为止,整个过程忽略中断。下面是acquireShared()的源码:tryAcquireShared()尝试获取资源,成功则直接返回;
失败则通过doAcquireShared()进入等待队列park(),直到被unpark()/interrupt()并成功获取到资源才返回。整个等待过程也是忽略中断的。
其实跟acquire()的流程大同小异,只不过多了个自己拿到资源后,还会去唤醒后继队友的操作(这才是共享嘛)。
* @param arg
*/
public final void acquireShared(int arg) {
/**
* 这里tryAcquireShared()依然需要自定义同步器去实现。但是AQS已经把其返回值的语义定义好了:
* 负值代表获取失败;0代表获取成功,但没有剩余资源;正数表示获取成功,还有剩余资源,其他线程还可以去获取。
* 所以这里acquireShared()的流程就是:tryAcquireShared()尝试获取资源,成功则直接返回;
失败则通过doAcquireShared()进入等待队列,直到获取到资源为止才返回。
*/
if (tryAcquireShared(arg) < 0)
doAcquireShared(arg);
}
public final void acquireSharedInterruptibly(int arg)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
if (tryAcquireShared(arg) < 0)
doAcquireSharedInterruptibly(arg);
}
public final boolean tryAcquireSharedNanos(int arg, long nanosTimeout)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
return tryAcquireShared(arg) >= 0 ||
doAcquireSharedNanos(arg, nanosTimeout);
}
/**
* releaseShared()吧。此方法是共享模式下线程释放共享资源的顶层入口。它会释放指定量的资源,
* 如果彻底释放了(即state=0),它会唤醒等待队列里的其他线程来获取资源。下面是releaseShared()的源码:
* 释放掉资源后,唤醒后继。跟独占模式下的release()相似,但有一点稍微需要注意:
* 独占模式下的tryRelease()在完全释放掉资源(state=0)后,才会返回true去唤醒其他线程,
* 这主要是基于可重入的考量;而共享模式下的releaseShared()则没有这种要求,
* 一是共享的实质--多线程可并发执行;二是共享模式基本也不会重入,
* 所以自定义同步器可以根据需要决定返回值。
* @param arg
* @return
*/
public final boolean releaseShared(int arg) {
if (tryReleaseShared(arg)) {//尝试释放资源
doReleaseShared();//唤醒后继结点
return true;
}
return false;
}
public final boolean hasQueuedThreads() {
return head != tail;
}
public final boolean hasContended() {
return head != null;
}
public final Thread getFirstQueuedThread() {
return (head == tail) ? null : fullGetFirstQueuedThread();
}
private Thread fullGetFirstQueuedThread() {
Node h, s;
Thread st;
if (((h = head) != null && (s = h.next) != null &&
s.prev == head && (st = s.thread) != null) ||
((h = head) != null && (s = h.next) != null &&
s.prev == head && (st = s.thread) != null))
return st;
Node t = tail;
Thread firstThread = null;
while (t != null && t != head) {
Thread tt = t.thread;
if (tt != null)
firstThread = tt;
t = t.prev;
}
return firstThread;
}
public final boolean isQueued(Thread thread) {
if (thread == null)
throw new NullPointerException();
for (Node p = tail; p != null; p = p.prev)
if (p.thread == thread)
return true;
return false;
}
final boolean apparentlyFirstQueuedIsExclusive() {
Node h, s;
return (h = head) != null &&
(s = h.next) != null &&
!s.isShared() &&
s.thread != null;
}
public final boolean hasQueuedPredecessors() {
Node t = tail; // Read fields in reverse initialization order
Node h = head;
Node s;
return h != t &&
((s = h.next) == null || s.thread != Thread.currentThread());
}
public final int getQueueLength() {
int n = 0;
for (Node p = tail; p != null; p = p.prev) {
if (p.thread != null)
++n;
}
return n;
}
public final Collection getQueuedThreads() {
ArrayList list = new ArrayList();
for (Node p = tail; p != null; p = p.prev) {
Thread t = p.thread;
if (t != null)
list.add(t);
}
return list;
}
public final Collection getExclusiveQueuedThreads() {
ArrayList list = new ArrayList();
for (Node p = tail; p != null; p = p.prev) {
if (!p.isShared()) {
Thread t = p.thread;
if (t != null)
list.add(t);
}
}
return list;
}
public final Collection getSharedQueuedThreads() {
ArrayList list = new ArrayList();
for (Node p = tail; p != null; p = p.prev) {
if (p.isShared()) {
Thread t = p.thread;
if (t != null)
list.add(t);
}
}
return list;
}
public String toString() {
int s = getState();
String q = hasQueuedThreads() ? "non" : "";
return super.toString() +
"[State = " + s + ", " + q + "empty queue]";
}
final boolean isOnSyncQueue(Node node) {
if (node.waitStatus == Node.CONDITION || node.prev == null)
return false;
if (node.next != null) // If has successor, it must be on queue
return true;
return findNodeFromTail(node);
}
private boolean findNodeFromTail(Node node) {
Node t = tail;
for (;;) {
if (t == node)
return true;
if (t == null)
return false;
t = t.prev;
}
}
final boolean transferForSignal(Node node) {
if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
return false;
Node p = enq(node);
int ws = p.waitStatus;
if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))
LockSupport.unpark(node.thread);
return true;
}
final boolean transferAfterCancelledWait(Node node) {
if (compareAndSetWaitStatus(node, Node.CONDITION, 0)) {
enq(node);
return true;}
while (!isOnSyncQueue(node))
Thread.yield();
return false;
}
final int fullyRelease(Node node) {
boolean failed = true;
try {
int savedState = getState();
if (release(savedState)) {
failed = false;
return savedState;
} else {
throw new IllegalMonitorStateException();
}
} finally {
if (failed)
node.waitStatus = Node.CANCELLED;
}
}
public final boolean owns(ConditionObject condition) {
return condition.isOwnedBy(this);
}
public final boolean hasWaiters(ConditionObject condition) {
if (!owns(condition))
throw new IllegalArgumentException("Not owner");
return condition.hasWaiters();
}
public final int getWaitQueueLength(ConditionObject condition) {
if (!owns(condition))
throw new IllegalArgumentException("Not owner");
return condition.getWaitQueueLength();
}
public final Collection getWaitingThreads(ConditionObject condition) {
if (!owns(condition))
throw new IllegalArgumentException("Not owner");
return condition.getWaitingThreads();
}
public class ConditionObject implements Condition, java.io.Serializable {
private static final long serialVersionUID = 1173984872572414699L;
/** First node of condition queue. */
private transient Node firstWaiter;
/** Last node of condition queue. */
private transient Node lastWaiter;
public ConditionObject() { }
private Node addConditionWaiter() {
Node t = lastWaiter;
// If lastWaiter is cancelled, clean out.
if (t != null && t.waitStatus != Node.CONDITION) {
unlinkCancelledWaiters();
t = lastWaiter;
}
Node node = new Node(Thread.currentThread(), Node.CONDITION);
if (t == null)
firstWaiter = node;
else
t.nextWaiter = node;
lastWaiter = node;
return node;
}
private void doSignal(Node first) {
do {
if ( (firstWaiter = first.nextWaiter) == null)
lastWaiter = null;
first.nextWaiter = null;
} while (!transferForSignal(first) &&
(first = firstWaiter) != null);
}
private void doSignalAll(Node first) {
lastWaiter = firstWaiter = null;
do {
Node next = first.nextWaiter;
first.nextWaiter = null;
transferForSignal(first);
first = next;
} while (first != null);
}
private void unlinkCancelledWaiters() {
Node t = firstWaiter;
Node trail = null;
while (t != null) {
Node next = t.nextWaiter;
if (t.waitStatus != Node.CONDITION) {
t.nextWaiter = null;
if (trail == null)
firstWaiter = next;
else
trail.nextWaiter = next;
if (next == null)
lastWaiter = trail;
}
else
trail = t;
t = next;
}
}
public final void signal() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
Node first = firstWaiter;
if (first != null)
doSignal(first);
}
public final void signalAll() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
Node first = firstWaiter;
if (first != null)
doSignalAll(first);
}
public final void awaitUninterruptibly() {
Node node = addConditionWaiter();
int savedState = fullyRelease(node);
boolean interrupted = false;
while (!isOnSyncQueue(node)) {
LockSupport.park(this);
if (Thread.interrupted())
interrupted = true;
}
if (acquireQueued(node, savedState) || interrupted)
selfInterrupt();
}
private static final int REINTERRUPT = 1;
private static final int THROW_IE = -1;
private int checkInterruptWhileWaiting(Node node) {
return Thread.interrupted() ?
(transferAfterCancelledWait(node) ? THROW_IE : REINTERRUPT) :
0;
}
private void reportInterruptAfterWait(int interruptMode)
throws InterruptedException {
if (interruptMode == THROW_IE)
throw new InterruptedException();
else if (interruptMode == REINTERRUPT)
selfInterrupt();
}
public final void await() throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
Node node = addConditionWaiter();
int savedState = fullyRelease(node);
int interruptMode = 0;
while (!isOnSyncQueue(node)) {
LockSupport.park(this);
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
}
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
if (node.nextWaiter != null) // clean up if cancelled
unlinkCancelledWaiters();
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
}
public final long awaitNanos(long nanosTimeout)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
Node node = addConditionWaiter();
int savedState = fullyRelease(node);
final long deadline = System.nanoTime() + nanosTimeout;
int interruptMode = 0;
while (!isOnSyncQueue(node)) {
if (nanosTimeout <= 0L) {
transferAfterCancelledWait(node);
break;
}
if (nanosTimeout >= spinForTimeoutThreshold)
LockSupport.parkNanos(this, nanosTimeout);
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
nanosTimeout = deadline - System.nanoTime();
}
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
if (node.nextWaiter != null)
unlinkCancelledWaiters();
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
return deadline - System.nanoTime();
}
public final boolean awaitUntil(Date deadline)
throws InterruptedException {
long abstime = deadline.getTime();
if (Thread.interrupted())
throw new InterruptedException();
Node node = addConditionWaiter();
int savedState = fullyRelease(node);
boolean timedout = false;
int interruptMode = 0;
while (!isOnSyncQueue(node)) {
if (System.currentTimeMillis() > abstime) {
timedout = transferAfterCancelledWait(node);
break;
}
LockSupport.parkUntil(this, abstime);
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
}
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
if (node.nextWaiter != null)
unlinkCancelledWaiters();
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
return !timedout;
}
public final boolean await(long time, TimeUnit unit)
throws InterruptedException {
long nanosTimeout = unit.toNanos(time);
if (Thread.interrupted())
throw new InterruptedException();
Node node = addConditionWaiter();
int savedState = fullyRelease(node);
final long deadline = System.nanoTime() + nanosTimeout;
boolean timedout = false;
int interruptMode = 0;
while (!isOnSyncQueue(node)) {
if (nanosTimeout <= 0L) {
timedout = transferAfterCancelledWait(node);
break;
}
if (nanosTimeout >= spinForTimeoutThreshold)
LockSupport.parkNanos(this, nanosTimeout);
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
nanosTimeout = deadline - System.nanoTime();
}
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
if (node.nextWaiter != null)
unlinkCancelledWaiters();
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
return !timedout;
}
final boolean isOwnedBy(AbstractQueuedSynchronizer sync) {
return sync == AbstractQueuedSynchronizer.this;
}
protected final boolean hasWaiters() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
if (w.waitStatus == Node.CONDITION)
return true;
}
return false;
}
protected final int getWaitQueueLength() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
int n = 0;
for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
if (w.waitStatus == Node.CONDITION)
++n;
}
return n;
}
protected final Collection getWaitingThreads() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
ArrayList list = new ArrayList();
for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
if (w.waitStatus == Node.CONDITION) {
Thread t = w.thread;
if (t != null)
list.add(t);
}
}
return list;
}
}
private static final Unsafe unsafe = Unsafe.getUnsafe();
private static final long stateOffset;
private static final long headOffset;
private static final long tailOffset;
private static final long waitStatusOffset;
private static final long nextOffset;
static {
try {
/**
* 利用静态代码块 实现得到对象的偏移量 那么就可一利用cas机制了
*/
stateOffset = unsafe.objectFieldOffset
(AbstractQueuedSynchronizer.class.getDeclaredField("state"));
headOffset = unsafe.objectFieldOffset
(AbstractQueuedSynchronizer.class.getDeclaredField("head"));
tailOffset = unsafe.objectFieldOffset
(AbstractQueuedSynchronizer.class.getDeclaredField("tail"));
waitStatusOffset = unsafe.objectFieldOffset
(Node.class.getDeclaredField("waitStatus"));
nextOffset = unsafe.objectFieldOffset
(Node.class.getDeclaredField("next"));
} catch (Exception ex) { throw new Error(ex); }
}
private final boolean compareAndSetHead(Node update) {
return unsafe.compareAndSwapObject(this, headOffset, null, update);
}
private final boolean compareAndSetTail(Node expect, Node update) {
return unsafe.compareAndSwapObject(this, tailOffset, expect, update);
}
private static final boolean compareAndSetWaitStatus(Node node,
int expect,
int update) {
return unsafe.compareAndSwapInt(node, waitStatusOffset,
expect, update);
}
private static final boolean compareAndSetNext(Node node,
Node expect,
Node update) {
return unsafe.compareAndSwapObject(node, nextOffset, expect, update);
}
}
package com.kailong.lock;
/**
* Created by Administrator on 2017/4/20.
*/
public class AbstractOwnableSynchronizer implements java.io.Serializable {
/** 序列化id */
private static final long serialVersionUID = 3737899427754241961L;
/**
* 空构造器供子类使用。
*/
protected AbstractOwnableSynchronizer() { }
/**
* 当前所有者的排他模式同步。
*/
private transient Thread exclusiveOwnerThread;
/**
* 设置当前拥有独占访问权限的线程。
{@code null}参数表示没有线程拥有访问权限。
这种方法不会强加任何同步或
{@code volatile}字段访问。
@param线程所有者线程
*/
protected final void setExclusiveOwnerThread(Thread thread) {
exclusiveOwnerThread = thread;
}
/**
*返回由{@code setExclusiveOwnerThread}最后设置的线程,
*或{@code null}如果从未设置。 此方法不另行
*强制执行任何同步或{@code易失性}字段访问。
*返回所有者线程
*/
protected final Thread getExclusiveOwnerThread() {
return exclusiveOwnerThread;
}
}
package com.kailong.lock;
import java.util.Collection;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;
/**
* Created by Administrator on 2017/4/20.
*/
public class MyLock {
private final Sync sync;//同步策略
/**
* 抽象的同步 用模板方法设计模式 提供两种策略 公平锁和非公平锁
*/
static abstract class Sync extends AbstractQueuedSynchronizer{
private static final long serialVersionUID = -5179523762034025860L;
abstract void lock();//抽象加锁方法
/**
* 这个方法相当于AQS的ryAcquire,为什么非公平版的TryAcquire代码需要写在父类Sync 这里?
注意tryLock,它是只调用非公平版的tryLock。而ReentrantLock 是代理了
Sync ,根据多态机制。所以非公平版的TryAcquire只能写在父类Sync这里了。
* @param acquires
* @return
*/
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
protected final boolean tryRelease(int releases) {
int c = getState() - releases;
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
boolean free = false;
if (c == 0) {
free = true;
setExclusiveOwnerThread(null);
}
setState(c);
return free;
}
protected final boolean isHeldExclusively() {
return getExclusiveOwnerThread() == Thread.currentThread();
}
final ConditionObject newCondition() {
return new ConditionObject();
}
final Thread getOwner() {
return getState() == 0 ? null : getExclusiveOwnerThread();
}
final int getHoldCount() {
return isHeldExclusively() ? getState() : 0;
}
final boolean isLocked() {
return getState() != 0;
}
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
setState(0); // reset to unlocked state
}
}
/**
* 静态内部类 实现非公平锁
*/
static final class NonfairSync extends Sync{
@Override
void lock() {
if (compareAndSetState(0, 1))
setExclusiveOwnerThread(Thread.currentThread());
else
acquire(1);
}
protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);
}
}
/**
* 静态内部类实现公平锁
*/
static final class FairSync extends Sync{
@Override
void lock() {
acquire(1);
}
protected final boolean tryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (!hasQueuedPredecessors() &&
compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
}
/**
* 无参构造方法默认是非公平锁
*/
public MyLock() {
sync = new NonfairSync();
}
/**
* 传递boolean值 判断公平锁还是非公平锁
* @param fair
*/
public MyLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
}
/**
* 加锁方法 调用sync的lock方法 他会根据子类的模板方法来加锁 实现公平锁或者非公平锁
*/
public void lock() {
sync.lock();
}
/**
*
* @throws InterruptedException
*/
public void lockInterruptibly() throws InterruptedException {
sync.acquireInterruptibly(1);
}
/**
*
* @return
*/
public boolean tryLock() {
return sync.nonfairTryAcquire(1);
}
/**
*
* @param timeout
* @param unit
* @return
* @throws InterruptedException
*/
public boolean tryLock(long timeout, TimeUnit unit)
throws InterruptedException {
return sync.tryAcquireNanos(1, unit.toNanos(timeout));
}
/**
*
*/
public void unlock() {
sync.release(1);
}
/**
*
* @return
*/
public Condition newCondition() {
return sync.newCondition();
}
/**
*
* @return
*/
public int getHoldCount() {
return sync.getHoldCount();
}
/**
*
* @return
*/
public boolean isHeldByCurrentThread() {
return sync.isHeldExclusively();
}
/**
*
* @return
*/
public boolean isLocked() {
return sync.isLocked();
}
/**
*
* @return
*/
public final boolean isFair() {
return sync instanceof FairSync;
}
/**
*
* @return
*/
protected Thread getOwner() {
return sync.getOwner();
}
/**
*
* @return
*/
public final boolean hasQueuedThreads() {
return sync.hasQueuedThreads();
}
/**
*
* @param thread
* @return
*/
public final boolean hasQueuedThread(Thread thread) {
return sync.isQueued(thread);
}
/**
*
* @return
*/
public final int getQueueLength() {
return sync.getQueueLength();
}
/**
*
* @return
*/
protected Collection getQueuedThreads() {
return sync.getQueuedThreads();
}
/**
*
* @param condition
* @return
*/
public boolean hasWaiters(Condition condition) {
if (condition == null)
throw new NullPointerException();
if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
throw new IllegalArgumentException("not owner");
return sync.hasWaiters((AbstractQueuedSynchronizer.ConditionObject)condition);
}
/**
*
* @param condition
* @return
*/
public int getWaitQueueLength(Condition condition) {
if (condition == null)
throw new NullPointerException();
if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
throw new IllegalArgumentException("not owner");
return sync.getWaitQueueLength((AbstractQueuedSynchronizer.ConditionObject)condition);
}
/**
*
* @param condition
* @return
*/
protected Collection getWaitingThreads(Condition condition) {
if (condition == null)
throw new NullPointerException();
if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
throw new IllegalArgumentException("not owner");
return sync.getWaitingThreads((AbstractQueuedSynchronizer.ConditionObject)condition);
}
/**
* toString 方法覆盖
* @return
*/
public String toString() {
Thread o = sync.getOwner();
return super.toString() + ((o == null) ?
"[Unlocked]" :
"[Locked by thread " + o.getName() + "]");
}
public static void main(String[]args){
Lock lock=new ReentrantLock();
}
}
package com.kailong.lock;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Condition;
/**
* Created by Administrator on 2017/4/20.
* 自定义顶层接口 实现锁的基本功能
*/
public interface MysLock {
/**
* 加锁 如果锁已经被占用那么等待
*/
void lock();
/**
*获得锁但优先响应中断
* @throws InterruptedException
*/
void lockInterruptibly() throws InterruptedException;
/**
* 尝试获得锁 如果成功 返回true 失败返回false 此方法不等待,立即返回
* @return
*/
boolean tryLock();
/**
*给定时间尝试获得锁
* @param time
* @param unit
* @return
* @throws InterruptedException
*/
boolean tryLock(long time, TimeUnit unit) throws InterruptedException;
/**
* 释放锁
*/
void unlock();
/**
*条件
* @return
*/
Condition newCondition();
}