最近有个需求要对mysql的全量数据迁移到hbase,虽然hbase的设计非常利于高效的读取,但是它的compaction实现对海量数据写入造成非常大的影响,数据到一定量之后,就开始抽风。
分析hbase的实现,不管其运行的机制,其最终存储结构为分布式文件系统中的hfile格式。
刚好hbase的源代码中提供一个HFileOutputFormat类,分析其源代码可以看到:
/**
* Copyright 2009 The Apache Software Foundation
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.hbase.mapreduce;
import java.io.IOException;
import java.util.Map;
import java.util.TreeMap;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.HConstants;
import org.apache.hadoop.hbase.KeyValue;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.io.hfile.Compression;
import org.apache.hadoop.hbase.io.hfile.HFile;
import org.apache.hadoop.hbase.regionserver.StoreFile;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.mortbay.log.Log;
/**
* Writes HFiles. Passed KeyValues must arrive in order.
* Currently, can only write files to a single column family at a
* time. Multiple column families requires coordinating keys cross family.
* Writes current time as the sequence id for the file. Sets the major compacted
* attribute on created hfiles.
* @see KeyValueSortReducer
*/
public class HFileOutputFormat extends FileOutputFormat {
public RecordWriter getRecordWriter(TaskAttemptContext context)
throws IOException, InterruptedException {
// Get the path of the temporary output file
final Path outputPath = FileOutputFormat.getOutputPath(context);
final Path outputdir = new FileOutputCommitter(outputPath, context).getWorkPath();
Configuration conf = context.getConfiguration();
final FileSystem fs = outputdir.getFileSystem(conf);
// These configs. are from hbase-*.xml
final long maxsize = conf.getLong("hbase.hregion.max.filesize", 268435456);
final int blocksize = conf.getInt("hfile.min.blocksize.size", 65536);
// Invented config. Add to hbase-*.xml if other than default compression.
final String compression = conf.get("hfile.compression",
Compression.Algorithm.NONE.getName());
return new RecordWriter() {
// Map of families to writers and how much has been output on the writer.
private final Map writers =
new TreeMap(Bytes.BYTES_COMPARATOR);
private byte [] previousRow = HConstants.EMPTY_BYTE_ARRAY;
private final byte [] now = Bytes.toBytes(System.currentTimeMillis());
public void write(ImmutableBytesWritable row, KeyValue kv)
throws IOException {
long length = kv.getLength();
byte [] family = kv.getFamily();
WriterLength wl = this.writers.get(family);
if (wl == null || ((length + wl.written) >= maxsize) &&
Bytes.compareTo(this.previousRow, 0, this.previousRow.length,
kv.getBuffer(), kv.getRowOffset(), kv.getRowLength()) != 0) {
// Get a new writer.
Path basedir = new Path(outputdir, Bytes.toString(family));
if (wl == null) {
wl = new WriterLength();
this.writers.put(family, wl);
if (this.writers.size() > 1) throw new IOException("One family only");
// If wl == null, first file in family. Ensure family dir exits.
if (!fs.exists(basedir)) fs.mkdirs(basedir);
}
wl.writer = getNewWriter(wl.writer, basedir);
Log.info("Writer=" + wl.writer.getPath() +
((wl.written == 0)? "": ", wrote=" + wl.written));
wl.written = 0;
}
kv.updateLatestStamp(this.now);
wl.writer.append(kv);
wl.written += length;
// Copy the row so we know when a row transition.
this.previousRow = kv.getRow();
}
/* Create a new HFile.Writer. Close current if there is one.
* @param writer
* @param familydir
* @return A new HFile.Writer.
* @throws IOException
*/
private HFile.Writer getNewWriter(final HFile.Writer writer,
final Path familydir)
throws IOException {
close(writer);
return new HFile.Writer(fs, StoreFile.getUniqueFile(fs, familydir),
blocksize, compression, KeyValue.KEY_COMPARATOR);
}
private void close(final HFile.Writer w) throws IOException {
if (w != null) {
StoreFile.appendMetadata(w, System.currentTimeMillis(), true);
w.close();
}
}
public void close(TaskAttemptContext c)
throws IOException, InterruptedException {
for (Map.Entry e: this.writers.entrySet()) {
close(e.getValue().writer);
}
}
};
}
/*
* Data structure to hold a Writer and amount of data written on it.
*/
static class WriterLength {
long written = 0;
HFile.Writer writer = null;
}
}
可以看到,它的工作流程就是首先根据你的配置文件初始化,然后写成hfile的格式。
这里我做了个偷懒的demo:
HFileOutputFormat hf = new HFileOutputFormat();
HBaseConfiguration conf = new HBaseConfiguration();
conf.addResource(new Path("/home/performance/softs/hadoop/conf/core-site.xml"));
conf.set("mapred.output.dir", "/tmp");
conf.set("hfile.compression", Compression.Algorithm.LZO.getName());
TaskAttemptContext context = new TaskAttemptContext(conf, new TaskAttemptID());
RecordWriter writer = hf.getRecordWriter(context);
KeyValue kv = new KeyValue(Bytes.toBytes("1111111111111"), Bytes.toBytes("offer:action"),
System.currentTimeMillis(), Bytes.toBytes("test"));
KeyValue kv1 = new KeyValue(Bytes.toBytes("1111111111111"), Bytes.toBytes("offer:id"),
System.currentTimeMillis(), Bytes.toBytes("123"));
KeyValue kv3 = new KeyValue(Bytes.toBytes("1111111111112"), Bytes.toBytes("offer:action"),
System.currentTimeMillis(), Bytes.toBytes("test"));
KeyValue kv4 = new KeyValue(Bytes.toBytes("1111111111112"), Bytes.toBytes("offer:id"),
System.currentTimeMillis(), Bytes.toBytes("123"));
writer.write(null, kv);
writer.write(null, kv1);
writer.write(null, kv3);
writer.write(null, kv4);
writer.close(context);
执行然之后,会在hdfs的/tmp目录下生成一份文件。
注意批量写数据的时候一定要保证key的有序性
这个时候,hbase自己提供的一个基于jruby的loadtable.rb脚本就可以发挥作用了。
它的格式是loadtable.rb 你希望的表明 hdfs路径:
hbase org.jruby.Main loadtable.rb offer hdfs://user/root/importoffer/_temporary/_attempt__0000_r_000000_0/
执行完之后:
运行./hbase shell
>list
就会显示刚才导入的offer表了。