tensorflow13《TensorFlow实战Google深度学习框架》笔记-06-02mnist LeNet5卷积神经网络 code

01 LeNet5卷积神经网络前向传播

# 《TensorFlow实战Google深度学习框架》06 图像识别与卷积神经网络
# win10 Tensorflow1.0.1 python3.5.3
# CUDA v8.0 cudnn-8.0-windows10-x64-v5.1
# filename:LeNet5_infernece.py # LeNet5前向传播

import tensorflow as tf

# 1. 设定神经网络的参数
INPUT_NODE = 784
OUTPUT_NODE = 10

IMAGE_SIZE = 28
NUM_CHANNELS = 1
NUM_LABELS = 10

CONV1_DEEP = 32
CONV1_SIZE = 5

CONV2_DEEP = 64
CONV2_SIZE = 5

FC_SIZE = 512

# 2. 定义前向传播的过程
def inference(input_tensor, train, regularizer):
    with tf.variable_scope('layer1-conv1'):
        conv1_weights = tf.get_variable(
            "weight", [CONV1_SIZE, CONV1_SIZE, NUM_CHANNELS, CONV1_DEEP],
            initializer=tf.truncated_normal_initializer(stddev=0.1))
        conv1_biases = tf.get_variable("bias", [CONV1_DEEP], initializer=tf.constant_initializer(0.0))
        conv1 = tf.nn.conv2d(input_tensor, conv1_weights, strides=[1, 1, 1, 1], padding='SAME')
        relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_biases))

    with tf.name_scope("layer2-pool1"):
        pool1 = tf.nn.max_pool(relu1, ksize = [1,2,2,1],strides=[1,2,2,1],padding="SAME")

    with tf.variable_scope("layer3-conv2"):
        conv2_weights = tf.get_variable(
            "weight", [CONV2_SIZE, CONV2_SIZE, CONV1_DEEP, CONV2_DEEP],
            initializer=tf.truncated_normal_initializer(stddev=0.1))
        conv2_biases = tf.get_variable("bias", [CONV2_DEEP], initializer=tf.constant_initializer(0.0))
        conv2 = tf.nn.conv2d(pool1, conv2_weights, strides=[1, 1, 1, 1], padding='SAME')
        relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_biases))

    with tf.name_scope("layer4-pool2"):
        pool2 = tf.nn.max_pool(relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
        pool_shape = pool2.get_shape().as_list()
        nodes = pool_shape[1] * pool_shape[2] * pool_shape[3]
        reshaped = tf.reshape(pool2, [pool_shape[0], nodes])

    with tf.variable_scope('layer5-fc1'):
        fc1_weights = tf.get_variable("weight", [nodes, FC_SIZE],
                                      initializer=tf.truncated_normal_initializer(stddev=0.1))
        if regularizer != None: tf.add_to_collection('losses', regularizer(fc1_weights))
        fc1_biases = tf.get_variable("bias", [FC_SIZE], initializer=tf.constant_initializer(0.1))

        fc1 = tf.nn.relu(tf.matmul(reshaped, fc1_weights) + fc1_biases)
        if train: fc1 = tf.nn.dropout(fc1, 0.5)

    with tf.variable_scope('layer6-fc2'):
        fc2_weights = tf.get_variable("weight", [FC_SIZE, NUM_LABELS],
                                      initializer=tf.truncated_normal_initializer(stddev=0.1))
        if regularizer != None: tf.add_to_collection('losses', regularizer(fc2_weights))
        fc2_biases = tf.get_variable("bias", [NUM_LABELS], initializer=tf.constant_initializer(0.1))
        logit = tf.matmul(fc1, fc2_weights) + fc2_biases

    return logit

02 LeNet5 卷积神经网络训练

# 《TensorFlow实战Google深度学习框架》06 图像识别与卷积神经网络
# win10 Tensorflow1.0.1 python3.5.3
# CUDA v8.0 cudnn-8.0-windows10-x64-v5.1
# filename:LeNet5_train.py # LeNet5训练

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import LeNet5_infernece
import os
import numpy as np

# 1. 定义神经网络相关的参数
BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.01
LEARNING_RATE_DECAY = 0.99
REGULARIZATION_RATE = 0.0001
TRAINING_STEPS = 55000
MOVING_AVERAGE_DECAY = 0.99
MODEL_SAVE_PATH = "LeNet5_model/" # 在当前目录下存在LeNet5_model子文件夹
MODEL_NAME = "LeNet5_model"

# 2. 定义训练过程
def train(mnist):
    # 定义输出为4维矩阵的placeholder
    x = tf.placeholder(tf.float32, [
        BATCH_SIZE,
        LeNet5_infernece.IMAGE_SIZE,
        LeNet5_infernece.IMAGE_SIZE,
        LeNet5_infernece.NUM_CHANNELS],
                       name='x-input')
    y_ = tf.placeholder(tf.float32, [None, LeNet5_infernece.OUTPUT_NODE], name='y-input')

    regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
    y = LeNet5_infernece.inference(x, True, regularizer)
    global_step = tf.Variable(0, trainable=False)

    # 定义损失函数、学习率、滑动平均操作以及训练过程。
    variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
    variables_averages_op = variable_averages.apply(tf.trainable_variables())
    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
    cross_entropy_mean = tf.reduce_mean(cross_entropy)
    loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))
    learning_rate = tf.train.exponential_decay(
        LEARNING_RATE_BASE,
        global_step,
        mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY,
        staircase=True)

    train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
    with tf.control_dependencies([train_step, variables_averages_op]):
        train_op = tf.no_op(name='train')

    # 初始化TensorFlow持久化类。
    saver = tf.train.Saver()
    with tf.Session() as sess:
        tf.global_variables_initializer().run()
        for i in range(TRAINING_STEPS):
            xs, ys = mnist.train.next_batch(BATCH_SIZE)

            reshaped_xs = np.reshape(xs, (
                BATCH_SIZE,
                LeNet5_infernece.IMAGE_SIZE,
                LeNet5_infernece.IMAGE_SIZE,
                LeNet5_infernece.NUM_CHANNELS))
            _, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: reshaped_xs, y_: ys})

            if i % 1000 == 0:
                print("After %d training step(s), loss on training batch is %g." % (step, loss_value))
                saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step)

# 3. 主程序入口
def main(argv=None):
    mnist = input_data.read_data_sets("../../../datasets/MNIST_data", one_hot=True)
    train(mnist)

if __name__ == '__main__':
    main()
'''
...
After 49001 training step(s), loss on training batch is 0.589334.
After 50001 training step(s), loss on training batch is 0.601423.
After 51001 training step(s), loss on training batch is 0.639142.
After 52001 training step(s), loss on training batch is 0.610477.
After 53001 training step(s), loss on training batch is 0.58531.
After 54001 training step(s), loss on training batch is 0.626083.
'''

03 LeNet5 卷积神经网络测试

# 《TensorFlow实战Google深度学习框架》06 图像识别与卷积神经网络
# win10 Tensorflow1.0.1 python3.5.3
# CUDA v8.0 cudnn-8.0-windows10-x64-v5.1
# filename:LeNet5_eval.py # 测试

import time
import math
import tensorflow as tf
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data
import LeNet5_infernece
import LeNet5_train

def evaluate(mnist):
    with tf.Graph().as_default() as g:
        # 定义输出为4维矩阵的placeholder
        x = tf.placeholder(tf.float32, [
            mnist.test.num_examples,
            #LeNet5_train.BATCH_SIZE,
            LeNet5_infernece.IMAGE_SIZE,
            LeNet5_infernece.IMAGE_SIZE,
            LeNet5_infernece.NUM_CHANNELS],
                           name='x-input')
        y_ = tf.placeholder(tf.float32, [None, LeNet5_infernece.OUTPUT_NODE], name='y-input')
        validate_feed = {x: mnist.test.images, y_: mnist.test.labels}
        global_step = tf.Variable(0, trainable=False)

        regularizer = tf.contrib.layers.l2_regularizer(LeNet5_train.REGULARIZATION_RATE)
        y = LeNet5_infernece.inference(x, False, regularizer)
        correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

        variable_averages = tf.train.ExponentialMovingAverage(LeNet5_train.MOVING_AVERAGE_DECAY)
        variables_to_restore = variable_averages.variables_to_restore()
        saver = tf.train.Saver(variables_to_restore)

        #n = math.ceil(mnist.test.num_examples / LeNet5_train.BATCH_SIZE)
        n = math.ceil(mnist.test.num_examples / mnist.test.num_examples)
        for i in range(n):
            with tf.Session() as sess:
                ckpt = tf.train.get_checkpoint_state(LeNet5_train.MODEL_SAVE_PATH)
                if ckpt and ckpt.model_checkpoint_path:
                    saver.restore(sess, ckpt.model_checkpoint_path)
                    global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
                    xs, ys = mnist.test.next_batch(mnist.test.num_examples)
                    #xs, ys = mnist.test.next_batch(LeNet5_train.BATCH_SIZE)
                    reshaped_xs = np.reshape(xs, (
                        mnist.test.num_examples,
                        #LeNet5_train.BATCH_SIZE,
                        LeNet5_infernece.IMAGE_SIZE,
                        LeNet5_infernece.IMAGE_SIZE,
                        LeNet5_infernece.NUM_CHANNELS))
                    accuracy_score = sess.run(accuracy, feed_dict={x:reshaped_xs, y_:ys})
                    print("After %s training step(s), test accuracy = %g" % (global_step, accuracy_score))
                else:
                    print('No checkpoint file found')
                    return

# 主程序
def main(argv=None):
    mnist = input_data.read_data_sets("../../../datasets/MNIST_data", one_hot=True)
    evaluate(mnist)

if __name__ == '__main__':
    main()
'''
After 54001 training step(s), test accuracy = 0.9915
'''

你可能感兴趣的:(tensorflow)