tensorflow36《TensorFlow实战》笔记-06-04 TensorFlow实现 ResNet code

# 《TensorFlow实战》06 TensorFlow实现经典卷积神经网络
# win10 Tensorflow1.0.1 python3.5.3
# CUDA v8.0 cudnn-8.0-windows10-x64-v5.1
# filename:sz06.04.py # TensorFlow实现 ResNet

# https://github.com/tensorflow/models/blob/master/slim/nets/resnet_v2.py
# tensorflow_models\slim\nets\resnet_v2.py

import collections
import tensorflow as tf
from datetime import datetime
import math
import time
slim = tf.contrib.slim

class Block(collections.namedtuple('Block', ['scope', 'unit_fn', 'args'])):
    'A name tuple describing a ResNet block.'

def subsample(inputs, factor, scope=None):
    if factor == 1:
        return inputs
    else:
        return slim.max_pool2d(inputs, [1, 1], stride=factor, scope=scope)

def conv2d_same(inputs, num_outputs, kernel_size, stride, scope=None):
    if stride == 1:
        return slim.conv2d(inputs, num_outputs, kernel_size, stride=1, padding='SAME', scope=scope)
    else:
        pad_total = kernel_size - 1
        pad_beg = pad_total // 2
        pad_end = pad_total - pad_beg
        inputs = tf.pad(inputs, [[0, 0], [pad_beg, pad_end], [pad_beg, pad_end], [0, 0]])
        return slim.conv2d(inputs, num_outputs, kernel_size, stride=stride, padding='VALID', scope=scope)

@slim.add_arg_scope
def stack_blocks_dense(net, blocks, outputs_collections=None):
    for block in blocks:
        with tf.variable_scope(block.scope, 'block', [net]) as sc:
            for i, unit in enumerate(block.args):
                with tf.variable_scope('unit_%d' % (i + 1), values=[net]):
                    unit_depth, unit_depth_bottleneck, unit_stride = unit
                    net = block.unit_fn(net,
                                        depth=unit_depth,
                                        depth_bottleneck=unit_depth_bottleneck,
                                        stride=unit_stride)
            net = slim.utils.collect_named_outputs(outputs_collections, sc.name, net)
    return net

def resnet_arg_scope(is_training=True,
                     weight_decay=0.0001,
                     batch_norm_decay=0.997,
                     batch_norm_epsilon=1e-5,
                     batch_norm_scale=True):
    batch_norm_params = {
        'is_training': is_training,
        'decay': batch_norm_decay,
        'epsilon': batch_norm_epsilon,
        'scale': batch_norm_scale,
        'updates_collections': tf.GraphKeys.UPDATE_OPS,
    }
    with slim.arg_scope(
            [slim.conv2d],
            weights_regularizer=slim.l2_regularizer(weight_decay),
            weights_initializer=slim.variance_scaling_initializer(),
            activation_fn=tf.nn.relu,
            normalizer_fn=slim.batch_norm,
            normalizer_params=batch_norm_params):
        with slim.arg_scope([slim.batch_norm], **batch_norm_params):
            with slim.arg_scope([slim.max_pool2d], padding='SAME') as arg_sc:
                return arg_sc

@slim.add_arg_scope
def bottleneck(inputs, depth, depth_bottleneck, stride, outputs_collections=None, scope=None):
    with tf.variable_scope(scope, 'bottleneck_v2', [inputs]) as sc:
        depth_in = slim.utils.last_dimension(inputs.get_shape(), min_rank=4)
        preact = slim.batch_norm(inputs, activation_fn=tf.nn.relu, scope='preact')
        if depth == depth_in:
            shortcut = subsample(inputs, stride, 'shortcut')
        else:
            shortcut = slim.conv2d(preact, depth, [1, 1], stride=stride,
                                   normalizer_fn=None, activation_fn=None,
                                   scope='shortcut')
        residual = slim.conv2d(preact, depth_bottleneck, [1, 1], stride=1, scope='conv1')
        residual = conv2d_same(residual, depth_bottleneck, 3, stride, scope='conv2')
        residual = slim.conv2d(residual, depth, [1, 1], stride=1,
                               normalizer_fn=None, activation_fn=None,
                               scope='conv3')

        output = shortcut + residual
        return slim.utils.collect_named_outputs(outputs_collections, sc.name, output)

def resnet_v2(inputs,
              blocks,
              num_classes=None,
              global_pool=True,
              include_root_block=True,
              reuse=None,
              scope=None):
    with tf.variable_scope(scope, 'resnet_v2', [inputs], reuse=reuse) as sc:
        end_points_collection = sc.original_name_scope + '_end_points'
        with slim.arg_scope([slim.conv2d, bottleneck, stack_blocks_dense], outputs_collections=end_points_collection):
            net = inputs
            if include_root_block:
                with slim.arg_scope([slim.conv2d], activation_fn=None, normalizer_fn=None):
                    net = conv2d_same(net, 64, 7, stride=2, scope='conv1')
                net = slim.max_pool2d(net, [3, 3], stride=2, scope='pool1')
            net = stack_blocks_dense(net, blocks)
            net = slim.batch_norm(net, activation_fn=tf.nn.relu, scope='postnorm')
            if global_pool:
                net = tf.reduce_mean(net, [1, 2], name='pool5', keep_dims=True)
            if num_classes is not None:
                net = slim.conv2d(net, num_classes, [1, 1], activation_fn=None,
                                  normalizer_fn=None, scope='logits')
            end_points = slim.utils.convert_collection_to_dict(end_points_collection)
            if num_classes is not None:
                end_points['predictions'] = slim.softmax(net, scope='predictions')
            return net, end_points

def resnet_v2_50(inputs,
                 num_classes=None,
                 global_pool=True,
                 reuse=None,
                 scope='resnet_v2_50'):
    blocks=[
        Block('block1', bottleneck, [(256, 64, 1)]*2 + [(256, 64, 2)]),
        Block('block2', bottleneck, [(512, 128, 1)]*3 + [(512, 128, 2)]),
        Block('block3', bottleneck, [(1024, 256, 1)]*5 + [(1024, 256, 2)]),
        Block('block4', bottleneck, [(2048, 512, 1)]*3)
    ]
    return resnet_v2(inputs, blocks, num_classes, global_pool,
                     include_root_block=True, reuse=reuse, scope=scope)

def resnet_v2_101(inputs,
                  num_classes=None,
                  global_pool=True,
                  reuse=None,
                  scope='resnet_v2_101'):
    blocks = [
        Block('block1', bottleneck, [(256, 64, 1)]*2 + [(256, 64, 2)]),
        Block('block2', bottleneck, [(512, 128, 1)]*3 + [(512, 128, 2)]),
        Block('block3', bottleneck, [(1024, 256, 1)]*22 + [(1024, 256, 2)]),
        Block('block4', bottleneck, [(2048, 512, 1)]*3)
    ]
    return resnet_v2(inputs, blocks, num_classes, global_pool,
                     include_root_block=True, reuse=reuse, scope=scope)

def resnet_v2_152(inputs,
                  num_classes=None,
                  global_pool=True,
                  reuse=None,
                  scope='resnet_v2_152'):
    blocks=[
        Block('block1', bottleneck, [(256, 64, 1)]*2 + [(256, 64, 2)]),
        Block('block2', bottleneck, [(512, 128, 1)]*7 + [(512, 128, 2)]),
        Block('block3', bottleneck, [(1024, 256, 1)]*35 + [(1024, 256, 2)]),
        Block('block4', bottleneck, [(2048, 512, 1)]*3)
    ]
    return resnet_v2(inputs, blocks, num_classes, global_pool,
                     include_root_block=True, reuse=reuse, scope=scope)

def resnet_v2_200(inputs,
                  num_classes=None,
                  global_pool=True,
                  reuse=None,
                  scope='resnet_v2_200'):
    blocks=[
        Block('block1', bottleneck, [(256, 64, 1)]*2 + [(256, 64, 2)]),
        Block('block2', bottleneck, [(512, 256, 1)]*23 + [(512, 128, 2)]),
        Block('block3', bottleneck, [(1024, 256, 1)]*35 + [(1024, 256, 2)]),
        Block('block4', bottleneck, [(2048, 512, 1)]*3)
    ]
    return resnet_v2(inputs, blocks, num_classes, global_pool,
                     include_root_block=True, reuse=reuse, scope=scope)

def time_tensorflow_run(session, target, info_string):
    num_steps_burn_in = 10
    total_duration = 0.0
    total_duration_squared = 0.0

    for i in range(num_batches + num_steps_burn_in):
        start_time = time.time()
        _ = session.run(target)
        duration = time.time() - start_time
        if i >= num_steps_burn_in:
            if not i %10:
                print('%s: step %d, duration = %.3f' %(datetime.now(), i - num_steps_burn_in, duration))
            total_duration += duration
            total_duration_squared += duration * duration

    mn = total_duration / num_batches
    vr = total_duration_squared / num_batches - mn * mn
    sd = math.sqrt(vr)
    print('%s: %s across %d steps, %.3f +/- %.3f sec / batch' %(datetime.now(), info_string, num_batches, mn, sd))

batch_size=32
height, width = 224, 224
inputs = tf.random_uniform((batch_size, height, width, 3))
with slim.arg_scope(resnet_arg_scope(is_training=False)):
    net, end_points = resnet_v2_152(inputs, 1000)

init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
num_batches = 100
time_tensorflow_run(sess, net, 'Forward')
'''
2017-04-14 23:51:30.904068: step 0, duration = 0.969
2017-04-14 23:51:40.467593: step 10, duration = 0.953
2017-04-14 23:51:50.046747: step 20, duration = 0.953
2017-04-14 23:51:59.625897: step 30, duration = 0.953
2017-04-14 23:52:09.205049: step 40, duration = 0.969
2017-04-14 23:52:18.768574: step 50, duration = 0.953
2017-04-14 23:52:28.363353: step 60, duration = 0.969
2017-04-14 23:52:37.942557: step 70, duration = 0.969
2017-04-14 23:52:47.521667: step 80, duration = 0.953
2017-04-14 23:52:57.090941: step 90, duration = 0.959
2017-04-14 23:53:05.717893: Forward across 100 steps, 0.958 +/- 0.007 sec / batch
'''

你可能感兴趣的:(tensorflow)