- 使用Docker安装Spark集群(带有HDFS)
Sicilly_琬姗
云计算大数据dockersparkhdfs
本实验在CentOS7中完成第一部分:安装Docker这一部分是安装Docker,如果机器中已经安装过Docker,可以直接跳过[root@VM-48-22-centos~]#systemctlstopfirewalld[root@VM-48-22-centos~]#systemctldisablefirewalld[root@VM-48-22-centos~]#systemctlstatusfi
- Hbase深入浅出
天才之上
数据存储Hbase大数据存储
目录HBase在大数据生态圈中的位置HBase与传统关系数据库的区别HBase相关的模块以及HBase表格的特性HBase的使用建议Phoenix的使用总结HBase在大数据生态圈中的位置提到大数据的存储,大多数人首先联想到的是Hadoop和Hadoop中的HDFS模块。大家熟知的Spark、以及Hadoop的MapReduce,可以理解为一种计算框架。而HDFS,我们可以认为是为计算框架服务的存
- HBase简介:高效分布式数据存储和处理
代码指四方
分布式hbase数据库大数据
HBase简介:高效分布式数据存储和处理HBase是一个高效的、可扩展的分布式数据库,它是构建在ApacheHadoop之上的开源项目。HBase的设计目标是为大规模数据存储和处理提供高吞吐量和低延迟的解决方案。它可以在成百上千台服务器上运行,并能够处理海量的结构化和半结构化数据。HBase的核心特点包括:分布式存储:HBase使用Hadoop分布式文件系统(HDFS)作为底层存储,数据被分布在集
- 深度优先搜索DFS
顾北辰20
Java数据结构算法数据结构java
目录类`GraphDFS`的定义深度优先搜索方法`dfs`访问顺序的获取`order`深度优先搜索(DFS,Depth-FirstSearch)算法。深度优先搜索是一种用于遍历或搜索树或图的算法,其特点是从某个起始顶点出发,首先访问这个顶点,然后递归地访问与这个顶点直接相连的一个未访问过的顶点,再从这个顶点出发,继续访问它的未访问过的邻接顶点,如此重复,直到不能再深入为止,再回溯,直到所有能到达的
- Hadoop常用端口号
海洋 之心
Hadoop问题解决hadoophbase大数据
Hadoop是一个由多个组件构成的分布式系统,每个组件都会使用一些特定的端口号来进行通信和交互。以下是Hadoop2.x常用的端口号列表:HDFS端口号:NameNode:50070SecondaryNameNode:50090DataNode:50010DataNode(数据传输):50020YARN端口号:ResourceManager:8088NodeManager:8042MapReduc
- 大数据之-hdfs+hive+hbase+kudu+presto集群(6节点)
管哥的运维私房菜
大数据hdfshivekuduprestohbase
几个主要软件的下载地址:prestohttps://prestosql.io/docs/current/index.htmlkudurpm包地址https://github.com/MartinWeindel/kudu-rpm/releaseshivehttp://mirror.bit.edu.cn/apache/hive/hdfshttp://archive.apache.org/dist/ha
- Hadoop 的分布式缓存机制是如何实现的?如何在大规模集群中优化缓存性能?
晚夜微雨问海棠呀
分布式hadoop缓存
Hadoop的分布式缓存机制是一种用于在MapReduce任务中高效分发和访问文件的机制。通过分布式缓存,用户可以将小文件(如配置文件、字典文件等)分发到各个计算节点,从而提高任务的执行效率。分布式缓存的工作原理文件上传:用户将需要缓存的文件上传到HDFS(HadoopDistributedFileSystem)。文件路径可以在作业配置中指定。作业提交:在提交MapReduce作业时,用户可以通过
- HBase的合并操作
b1gx
HBase
compact的作用flush操作会将memstore的数据落地为一个个StoreFile(HFile),那么随着时间的增长在HDFS上面就会有很多的HFile文件,这样对读操作会产生比较大的影响(读操作会对HFile进行归并查询),并且对DataNode的压力也会比较大。为了降低对读操作的影响,可以对这些HFile进行compact操作,但是compact操作会产生大量的IO,所以可以看出com
- 深入HBase——引入
黄雪超
大数据基础#深入HBase大数据数据库hbase
引入前面我们通过深入HDFS到深入MapReduce,从设计和落地,去深入了解了大数据最底层的基石——存储与计算是如何实现的。这个专栏则开始来看大数据的三驾马车中最后一个。通过前面我们对于GFS和MapReduce论文实现的了解,我们知道GFS在数据写入时,只对顺序写入有比较弱的一致性保障,而对于数据读取,虽然GFS支持随机读取,但在当时的硬件条件下,实际上也是支撑不了真正的高并发读取的;此外,M
- Ubuntu下配置安装Hadoop 2.2
weixin_30501857
大数据java运维
---恢复内容开始---这两天玩Hadoop,之前在我的Mac上配置了好长时间都没成功的Hadoop环境,今天想在win7虚拟机下的Ubuntu12.0464位机下配置,然后再建一个组群看一看。参考资料:1.InstallingsinglenodeHadoop2.2.0onUbuntu:http://bigdatahandler.com/hadoop-hdfs/installing-single-
- 蓝易云 - HBase基础知识
蓝易云
hbase数据库大数据phppython人工智能
HBase是一个分布式、可伸缩、列式存储的NoSQL数据库,它建立在Hadoop的HDFS之上,提供高可靠性、高性能的数据存储和访问。以下是HBase的基础知识:数据模型:HBase以表的形式存储数据,每个表由行和列组成,可以动态添加列族。每行由唯一的行键标识,列族和列限定符(Qualifier)用于唯一标识列。架构:HBase采用分布式架构,数据被分散存储在多个RegionServer上,每个R
- 关于虚拟机的Unknown command
真的不想写实验
后端hadoopjavalinux
浅浅的记录一下,由于我直接复制了这条命令./bin/hdfsdfs–mkdirinput导致出现–mkdir:Unknowncommand的错误,原因在于我复制的这条命令中的-和虚拟机的编码不一样,导致出错,所以应该手敲这个符号“-”,这样就可以啦!这是错误截图:这是正确截图:如果对你有帮助的话,就点个赞吧o( ̄▽ ̄)d
- hadoop 1.0 基本概念了解
fenggfa
hadoophadoop大数据mapreduce
hadoop基本概念了解common:hadoop组件公共常用工具类Avro:Avro是用于数据序列化的系统。不同机器之间数据交流的保障。MapReduce:MapReduce是一种编程模型,分为Map函数和Reduce函数。Map函数负责将输入数据转化为中间值,中间值再通过Reduce函数转化成输出数据HDFS:HDFS是一个分布式文件系统。通过一次写入,多次读出来实现。Chukwa:Chukw
- 深入理解Hadoop 1.0.0源码架构及组件实现
隔壁王医生
本文还有配套的精品资源,点击获取简介:Hadoop1.0.0作为大数据处理的开源框架,在业界有广泛应用。该版本包含核心分布式文件系统HDFS、MapReduce计算模型、Common工具库等关键组件。通过分析源码,可深入理解这些组件的设计和实现细节,包括数据复制、任务调度、容错机制以及系统配置管理。本课程旨在指导学生和开发者深入学习Hadoop的核心原理和实践应用,为其在大数据领域的进一步研究和开
- HiveQL命令(三)- Hive函数
BigDataMagician
HiveQL命令hivehadoop数据仓库
文章目录前言一、Hive内置函数1.数值函数2.字符串函数3.日期与时间函数4.条件函数5.聚合函数6.集合函数7.类型转换函数8.表生成函数(UDTF)前言在大数据处理和分析的过程中,数据的转换和处理是至关重要的环节。ApacheHive作为一种流行的数据仓库工具,提供了丰富的内置函数,帮助用户高效地处理和分析存储在Hadoop分布式文件系统(HDFS)中的数据。这些内置函数涵盖了数值计算、字符
- 掌握大数据--Hive全面指南
纪祥_ee1
大数据hivehadoop
1.Hive简介2.Hive部署方式3.Hive的架构图4.Hive初体验5.HiveSQL语法--DDL操作数据库1.Hive简介ApacheHive是建立在Hadoop之上的一个数据仓库工具,它提供了一种类似于SQL的查询语言,称为HiveQL,用于查询和分析存储在Hadoop分布式文件系统(HDFS)中的大规模结构化数据。以下是Hive的一些主要特点和介绍:1.类SQL查询语言:HiveSQ
- 【Flink实战】Flink -C实现类路径配置与实现UDF Jar
roman_日积跬步-终至千里
#flink实战flinkjar大数据
文章目录1.描述2.使用语法3.`-C`适用的Flink运行模式4.USINGJAR不可用1.描述Flink中的-C选项用于将URL添加到作业的类加载器中。URL可以指向本地、HTTP服务器或HDFS等资源的Jar文件。注意:此处的classpath的url必须是一个能够在client,JM和TM都被访问到的位置。此位置从client端的提交到JM的分发到TM的访问的过程中,不会发生文件移动的动作
- 大数据笔记(二):HDFS原理知识
Lansonli
大数据进阶知识大数据HDFS
目录HDFS原理知识一、前言二、思考三、理论知识点四、存储模型五、架构设计六、角色功能NameNodeDataNode七、元数据持久化八、安全模式九、HDFS中的SNN十、Block的副本放置策略十一、HDFS写流程十二、HDFS读流程HDFS原理知识一、前言博主语录:一文精讲一个知识点,多了你记不住,一句废话都没有经典语录:张牙舞爪的人,往往是脆弱的。因为真正强大的人,是自信的,自信就会温和,温
- hive出现内存溢出_hive问题处理
话食科普
hive出现内存溢出
内存溢出Client端内存溢出Client端发生内存溢出执行下面的看是很简单的一条sql语句:hive>selectcount(1)fromtest_tb_1_1;QueryID=hdfs_20180802104347_615d0836-cf41-475d-9bec-c62a1f408b21Totaljobs=1LaunchingJob1outof1Numberofreducetasksdeter
- Hive之数据操作DML
WHYBIGDATA
Hivehivehadoop大数据
Hive之数据操作DML文章目录Hive之数据操作DML@[toc]写在前面数据导入向表中装载数据(Load)通过查询语句向表中插入数据(Insert)查询语句中创建表并加载数据(AsSelect)创建表时通过Location指定加载数据路径Import数据到指定Hive表中5.2数据导出Insert导出Hadoop命令导出到本地HiveShell命令导出Export导出到HDFS上清除表中数据(
- MapReduce的代码编写
hjy1821
MapReduceMapReduce代码WordCount字数统计代码MapReduce编写MapReduce使用案例
MapReduce用例代码的编写流程1)函数入口①首先创建配置对象Configuration,用于加载配置文件的信息;②创建一个Job对象,通过getInstance()函数设置当前main函数所在的类,设置后运行代码可以找到函数的入口;③设置MapReduce的输入输出路径用于输入数据和输出计算的数据结果;注意若要是输出的路径在集群中已经存在,需要操作HDFS进行判断与删除,在此处要建立一个HD
- 2024-JAVA-大数据-面试汇总_大数据java部门面试(1)
2401_84141419
程序员java大数据面试
判断投票信息中的选举状态:就回答到这,后来下来百度了一下。。。32hive了解吗?Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供类SQL查询功能33.说说内部表和外部表的区别?内部表的数据是由Hive自身管理的,外部表的数据是由HDFS管理的;删除内部表会删除元数据和存储的数据;删除外部表只删除元数据不删除存储的数据34,你知道UDF吗?UDF就是H
- 大数据-267 实时数仓 - ODS Lambda架构 Kappa架构 核心思想
m0_74823336
面试学习路线阿里巴巴大数据架构
点一下关注吧!!!非常感谢!!持续更新!!!Java篇开始了!MyBatis更新完毕目前开始更新Spring,一起深入浅出!目前已经更新到了:Hadoop(已更完)HDFS(已更完)MapReduce(已更完)Hive(已更完)Flume(已更完)Sqoop(已更完)Zookeeper(已更完)HBase(已更完)Redis(已更完)Kafka(已更完)Spark(已更完)Flink(已更完)Cl
- Hbase基础
yandao
hadoophbasebigdatahadoop
1.HBase简介HBASE理论HBase是一个基于Hadoop的分布式、面向列的开源数据库,对大数据实现了随机定位和实时读写。HBase是基于Google的Bigtable技术实现的,GoogleBigtable利用GFS作为其文件存储系统,HBase利用Hadoop的HDFS作为其文件存储系统;Google运行MapReduce来处理Bigtable中的海量数据,HBase利用Hadoop的M
- HIVE常见面试题
兔子宇航员0301
数据开发小白成长笔记hivehadoop数据仓库
1.简述hiveHive是一个构建在Hadoop之上的数据仓库工具,主要用于处理和查询存储在HDFS上的大规模数据。Hive通过将结构化的数据文件映射成表,并提供类SQL的查询功能,使得用户可以通过编写SQL语句来进行数据分析,而不需要编写复杂的MapReduce程序2.简述hive读写文件机制Hive读写文件机制主要依赖Hadoop的HDFS(分布式文件系统)和MapReduce(计算框架)。
- 【starrocks学习】之将starrocks表同步到hive
chimchim66
学习hivehadoop
目录方法1:通过HDFS导出数据1.将StarRocks表数据导出到HDFS2.在Hive中创建外部表3.验证数据方法2:使用ApacheSpark同步1.添加StarRocks和Hive的依赖2.使用Spark读取StarRocks数据并写入Hive3.验证数据方法3:通过文件导出和导入1.导出StarRocks数据到本地文件2.将文件上传到HDFS3.在Hive中加载数据4.验证数据方法1:通
- 使用python实现Hadoop中MapReduce
qq_44801116
Pythonpythonhadoopmapreduce
Hadoop包含HDFS(分布式文件系统)、YARN(资源管理器)、MapReduce(编程模型)。一、三大组件的简介(1)HDFS(HadoopDistributedFileSystem):HDFS是Hadoop的分布式文件系统,它是将大规模数据分散存储在多个节点上的基础。主要负责数据的存储和管理,可以将大数据集分成多个数据块,并将数据块分配到不同的计算节点上存储,提高数据的可靠性和处理效率。旨
- Hadoop1.0和2.0的主要区别
web_15534274656
javahadoop大数据hdfsdubbojava-zookeeper
Hadoop1.0指的是版本为ApacheHadoop0.20.x、1.x或者CDH3系列的Hadoop,组件主要由HDFS和MapReduce两个系统组成,HDFS是一个分布式文件存储系统,MapReduce是一个离线处理框架,分为三部分,运行时环境为JobTracker和TaskTracker,编程模型为Map映射和Reduce规约,数据处理引擎为MapTask和ReduceTask,Hado
- Hadoop1.0-HDFS介绍
szjianzr
HADOOP介绍hadoopHDFS
Hadoop是Apache软件基金会所开发的并行计算框架与分布式文件系统。最核心的模块包括HadoopCommon、HDFS与MapReduce。HDFS是Hadoop分布式文件系统(HadoopDistributedFileSystem)的缩写,为分布式计算存储提供了底层支持。采用Java语言开发,可以部署在多种普通的廉价机器上,以集群处理数量积达到大型主机处理性能。一、HDFS基本概念1、Bl
- SQL on Hadoop
Lostgreen
大数据管理sqlhadoop数据库笔记学习分布式
SQL_on_HadoopSQLonHadoop概述Hadoop提供了一种分布式存储和计算的平台,为了解决传统关系型数据库无法处理海量数据的问题,通过扩展SQL的方式在Hadoop上执行分布式查询,称之为SQLonHadoop。根据架构的不同,分为四种主要类型:OutsideHadoop借助连接器实现SQL直接访问Hadoop数据。SQL引擎通常运行在Hadoop系统外部,作为一个桥梁查询HDFS
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分