转载的博客:http://machinelearningmastery.com/handwritten-digit-recognition-using-convolutional-neural-networks-python-keras/
1、显示设置输入张量的维度
from keras import backend as K
K.set_image_dim_ordering('th')
2、准备数据,格式转换
#load data
(X_train,y_train),(X_test,y_test) = mnist.load_data()
#reshape to be [samples][pixels][width][height]
X_train = X_train.reshape(X_train.shape[0],1,28,28).astype('float32')
X_test = X_test.reshape(X_test.shape[0],1,28,28).astype('float32')
X_train = X_train/255
X_test = X_test/255
#one hot encode
y_train = np_utils.to_categorical(y_train)
y_test = np_utils.to_categorical(y_test)
num_classes = y_test.shape[1]
def baseline_model():
#create model
model = Sequential()
model.add(Convolution2D(30,5,5,border_mode='valid',input_shape=(1,28,28),activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Convolution2D(15,3,3,activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(128,activation='relu'))
model.add(Dense(50,activation='relu'))
model.add(Dense(num_classes,activation='softmax'))
#Compile model
model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy'])
return model
model = baseline_model()
model.fit(X_train,y_train,validation_data=(X_test,y_test),nb_epoch=10,batch_size=200,verbose=2)
#
scores = model.evaluate(X_test,y_test,verbose=0)
print("Baseline Error: %.2f%%" % (100-scores[1]*100))
import numpy
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import Flatten
from keras.layers.convolutional import Convolution2D
from keras.layers.convolutional import MaxPooling2D
from keras.utils import np_utils
from keras import backend as K
K.set_image_dim_ordering('th')
seed = 7
numpy.random.seed(seed)
#load data
(X_train,y_train),(X_test,y_test) = mnist.load_data()
#reshape to be [samples][pixels][width][height]
X_train = X_train.reshape(X_train.shape[0],1,28,28).astype('float32')
X_test = X_test.reshape(X_test.shape[0],1,28,28).astype('float32')
X_train = X_train/255
X_test = X_test/255
#one hot encode
y_train = np_utils.to_categorical(y_train)
y_test = np_utils.to_categorical(y_test)
num_classes = y_test.shape[1]
def baseline_model():
#create model
model = Sequential()
model.add(Convolution2D(30,5,5,border_mode='valid',input_shape=(1,28,28),activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Convolution2D(15,3,3,activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(128,activation='relu'))
model.add(Dense(50,activation='relu'))
model.add(Dense(num_classes,activation='softmax'))
#Compile model
model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy'])
return model
model = baseline_model()
model.fit(X_train,y_train,validation_data=(X_test,y_test),nb_epoch=10,batch_size=200,verbose=2)
#
scores = model.evaluate(X_test,y_test,verbose=0)
print("Baseline Error: %.2f%%" % (100-scores[1]*100))