spark中常用的一些自然语言处理方法,分词、tf-idf、word2vec、文本分类等看看代码吧:
package com.iclick.word2vec
import org.apache.log4j.{ Level, Logger }
import org.apache.spark.{ SparkConf, SparkContext }
import org.apache.spark.sql.SQLContext
import org.apache.spark.mllib.feature.{ Word2Vec, Word2VecModel }
import org.apache.spark.mllib.linalg.{ SparseVector => SV }
import org.apache.spark.mllib.feature.HashingTF
import org.apache.spark.mllib.feature.IDF
object Word2VecTest {
def main(args: Array[String]): Unit = {
Logger.getLogger("org.apache.spark").setLevel(Level.ERROR)
Logger.getLogger("org.eclipse.jetty.server").setLevel(Level.OFF)
val sc = new SparkContext("local", "mysql")
val sqlContext = new SQLContext(sc)
val path = "D:\\SPARKCONFALL\\Spark机器学习数据\\20news-bydate-train\\*"
val rdd = sc.wholeTextFiles(path).cache()
val xxx = rdd.map {
case (file, text) => file.split("/").takeRight(2).head
}.map(n => (n, 1)).reduceByKey(_ + _).collect().sortBy(_._2).mkString("\n")
println("文章主题的数目")
println(xxx)
val newsgroups = rdd.map { case (file, text) => file.split("/").takeRight(2).head }
println("分词数目")
val text = rdd.map { case (file, text) => text }
val whieteSpaceSplit = text.flatMap { t => t.split(" ") }.map(_.toLowerCase())
println(whieteSpaceSplit.distinct().count)
println(whieteSpaceSplit.sample(true, 0.3, 42).take(100).mkString(","))
println("改进分词")
val nonWordSplit = text.flatMap(t => t.split("""\W+""").map(_.toLowerCase))
println(nonWordSplit.distinct.count)
println(nonWordSplit.distinct.sample(true, 0.3, 42).take(100).mkString(","))
val regex = """[^0-9]*""".r
val filterNumbers = nonWordSplit.filter(token => regex.pattern.matcher(token).matches)
println(filterNumbers.distinct.count)
println(filterNumbers.distinct.sample(true, 0.3, 42).take(100).mkString(","))
println("移除停用词")
val tokenCounts = filterNumbers.map(t => (t, 1)).reduceByKey(_ + _)
val oreringDesc = Ordering.by[(String, Int), Int](_._2)
//println(tokenCounts.top(20)(oreringDesc).mkString("\n"))
val stopwords = Set(
"the", "a", "an", "of", "or", "in", "for", "by", "on", "but", "is", "not", "with", "as", "was", "if",
"they", "are", "this", "and", "it", "have", "from", "at", "my", "be", "that", "to")
val tokenCountsFilteredStopwords = tokenCounts.filter { case (k, v) => !stopwords.contains(k) }
//println(tokenCountsFilteredStopwords.top(20)(oreringDesc).mkString("\n"))
val tokenCountsFilteredSize = tokenCountsFilteredStopwords.filter { case (k, v) => k.size >= 2 }
println(tokenCountsFilteredSize.top(20)(oreringDesc).mkString("\n"))
println("移除低频词")
val oreringAsc = Ordering.by[(String, Int), Int](-_._2)
//println(tokenCountsFilteredSize.top(20)(oreringAsc).mkString("\n"))
val rareTokens = tokenCounts.filter { case (k, v) => v < 2 }.map { case (k, v) => k }.collect.toSet
val tokenCountsFilteredAll = tokenCountsFilteredSize.filter { case (k, v) => !rareTokens.contains(k) }
println(tokenCountsFilteredAll.top(20)(oreringAsc).mkString("\n"))
def tokenize(line: String): Seq[String] = {
line.split("""\W+""")
.map(_.toLowerCase)
.filter(token => regex.pattern.matcher(token).matches)
.filterNot(token => stopwords.contains(token))
.filterNot(token => rareTokens.contains(token))
.filter(token => token.size >= 2)
.toSeq
}
//println(text.flatMap(doc => tokenize(doc)).distinct.count)
val tokens = text.map(doc => tokenize(doc))
println(tokens.first.take(20))
println("训练模型")
val dim = math.pow(2, 18).toInt
val hashingTF = new HashingTF(dim)
val tf = hashingTF.transform(tokens)
tf.cache()
val v = tf.first.asInstanceOf[SV]
println(v.size)
println(v.size)
println(v.values.size)
println(v.values.take(10).toSeq)
println(v.indices.take(10).toSeq)
println("fit & transform")
val idf = new IDF().fit(tf)
val tfidf = idf.transform(tf)
val v2 = tfidf.first.asInstanceOf[SV]
println(v2.values.size)
println(v2.values.take(10).toSeq)
println(v2.indices.take(10).toSeq)
// 分析权重
val minMaxVals = tfidf.map { v =>
val sv = v.asInstanceOf[SV]
(sv.values.min, sv.values.max)
}
val globalMinMax = minMaxVals.reduce {
case ((min1, max1), (min2, max2)) =>
(math.min(min1, min2), math.max(max1, max2))
}
println(globalMinMax)
//globalMinMax: (Double, Double) = (0.0,66155.39470409753)
//常用词
val common = sc.parallelize(Seq(Seq("you", "do", "we")))
val tfCommon = hashingTF.transform(common)
val tfidfCommon = idf.transform(tfCommon)
val commonVector = tfidfCommon.first.asInstanceOf[SV]
println(commonVector.values.toSeq)
//不常出现的单词
val uncommon = sc.parallelize(Seq(Seq("telescope", "legislation", "investment")))
val tfUncommon = hashingTF.transform(uncommon)
val tfidfUncommon = idf.transform(tfUncommon)
val uncommonVector = tfidfUncommon.first.asInstanceOf[SV]
println(uncommonVector.values.toSeq)
//
// 4 使用模型
//4.1 余弦相似度
import breeze.linalg._
val hockeyText = rdd.filter { case (file, text) => file.contains("hockey") }
val hockeyTF = hockeyText.mapValues(doc => hashingTF.transform(tokenize(doc)))
val hockeyTfIdf = idf.transform(hockeyTF.map(_._2))
val hockey1 = hockeyTfIdf.sample(true, 0.1, 42).first.asInstanceOf[SV]
val breeze1 = new SparseVector(hockey1.indices, hockey1.values, hockey1.size)
val hockey2 = hockeyTfIdf.sample(true, 0.1, 43).first.asInstanceOf[SV]
val breeze2 = new SparseVector(hockey2.indices, hockey2.values, hockey2.size)
val cosineSim = breeze1.dot(breeze2) / (norm(breeze1) * norm(breeze2))
println(cosineSim)
val graphicsText = rdd.filter { case (file, text) => file.contains("comp.graphics") }
val graphicsTF = graphicsText.mapValues(doc => hashingTF.transform(tokenize(doc)))
val graphicsTfIdf = idf.transform(graphicsTF.map(_._2))
val graphics = graphicsTfIdf.sample(true, 0.1, 42).first.asInstanceOf[SV]
val breezeGraphics = new SparseVector(graphics.indices, graphics.values, graphics.size)
val cosineSim2 = breeze1.dot(breezeGraphics) / (norm(breeze1) * norm(breezeGraphics))
println(cosineSim2)
val baseballText = rdd.filter { case (file, text) => file.contains("baseball") }
val baseballTF = baseballText.mapValues(doc => hashingTF.transform(tokenize(doc)))
val baseballTfIdf = idf.transform(baseballTF.map(_._2))
val baseball = baseballTfIdf.sample(true, 0.1, 42).first.asInstanceOf[SV]
val breezeBaseball = new SparseVector(baseball.indices, baseball.values, baseball.size)
val cosineSim3 = breeze1.dot(breezeBaseball) / (norm(breeze1) * norm(breezeBaseball))
println(cosineSim3)
//4.2 学习单词与主题的映射关系
//多分类映射
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.classification.NaiveBayes
import org.apache.spark.mllib.evaluation.MulticlassMetrics
val newsgroupsMap = newsgroups.distinct.collect().zipWithIndex.toMap
val zipped = newsgroups.zip(tfidf)
val train = zipped.map { case (topic, vector) => LabeledPoint(newsgroupsMap(topic), vector) }
train.cache
//朴素贝叶斯训练
val model = NaiveBayes.train(train, lambda = 0.1)
//加载测试数据集
val testPath = "D:\\SPARKCONFALL\\Spark机器学习数据\\20news-bydate-test\\*"
val testRDD = sc.wholeTextFiles(testPath)
val testLabels = testRDD.map {
case (file, text) =>
val topic = file.split("/").takeRight(2).head
newsgroupsMap(topic)
}
val testTf = testRDD.map { case (file, text) => hashingTF.transform(tokenize(text)) }
val testTfIdf = idf.transform(testTf)
val zippedTest = testLabels.zip(testTfIdf)
val test = zippedTest.map { case (topic, vector) => LabeledPoint(topic, vector) }
//计算准确度和多分类加权F-指标
val predictionAndLabel = test.map(p => (model.predict(p.features), p.label))
val accuracy = 1.0 * predictionAndLabel.filter(x => x._1 == x._2).count() / test.count()
println(accuracy)
val metrics = new MulticlassMetrics(predictionAndLabel)
println(metrics.weightedFMeasure)
//5 评估
val rawTokens = rdd.map { case (file, text) => text.split(" ") }
val rawTF = rawTokens.map(doc => hashingTF.transform(doc))
val rawTrain = newsgroups.zip(rawTF).map { case (topic, vector) => LabeledPoint(newsgroupsMap(topic), vector) }
val rawModel = NaiveBayes.train(rawTrain, lambda = 0.1)
val rawTestTF = testRDD.map { case (file, text) => hashingTF.transform(text.split(" ")) }
val rawZippedTest = testLabels.zip(rawTestTF)
val rawTest = rawZippedTest.map { case (topic, vector) => LabeledPoint(topic, vector) }
val rawPredictionAndLabel = rawTest.map(p => (rawModel.predict(p.features), p.label))
val rawAccuracy = 1.0 * rawPredictionAndLabel.filter(x => x._1 == x._2).count() / rawTest.count()
println(rawAccuracy)
val rawMetrics = new MulticlassMetrics(rawPredictionAndLabel)
println(rawMetrics.weightedFMeasure)
println("word2Vec模型训练")
val word2vec = new Word2Vec()
word2vec.setSeed(42) // we do this to generate the same results each time
val word2vecModel = word2vec.fit(tokens)
println("寻找最相似的二十个單詞,")
word2vecModel.findSynonyms("hockey", 20).foreach(println)
word2vecModel.findSynonyms("legislation", 20).foreach(println)
}
}