- 如何在飞牛云NAS快速使用Docker打造稳定安全的本地网站并对外可见
gkfkfhk
docker安全eureka
文章目录前言1.Docker下载源设置2.Docker下载WordPress3.Docker部署Mysql数据库4.WordPress参数设置5.飞牛云安装Cpolar工具6.固定Cpolar公网地址7.修改WordPress配置文件8.公网域名访问WordPress前言本文主要介绍如何在飞牛云NAS上利用Docker快速搭建并优化WordPress站点的技巧,并且了解了如何借助cpolar实现内
- 【守望绿色田园】揭秘基本农田保护的“五不准”制度
GeoSaaS
自然资源人工智能gis3d大数据数据库
在这个快速发展与变革的时代,守护脚下的每一寸耕地,保障国家粮食安全显得尤为重要。今天,就让我们一起深入了解一个至关重要的农业政策——“基本农田保护实行‘五不准’制度”。这不仅是农民朋友需要了解的法律常识,也是每位关心中国粮食安全与可持续发展人士的必修课。前言:基本农田,国之命脉基本农田,是指按照一定时期人口和社会经济发展对农产品的需求,依据土地利用总体规划确定不得占用的耕地。它是确保国家粮食安全的
- Python爬虫相关内容
猫猫头有亿点炸
python爬虫开发语言
一、打开源代码的方式鉴于时间过很久后我们可能会忘记的源代码位置所以写下以下文章便于实时查看:一般有两种方法打开源代码:第一是f12第二右键查看网页源代码二、特殊情况第三种情况当你用爬虫爬取内容的时候可能用xpath还是匹配不到任何结果因为页面可能会自动刷新所以使用xpath的时候匹配不到任何内容查找源代码的示例图片三、解决办法这个时候你可以先->f12(笔记本电脑fn+f12)再->ctrl+sh
- (大模型微调大模型学习路线大模型入门)_大模型 学习,吹爆!2025最详细的大模型学习路线已整理!手把手带你高效入门,大模型论文全打通!
大模型老炮
学习人工智能大模型学习AI大模型大模型微调大模型教程
一、初聊大模型1、什么是大模型?大模型,通常指的是在人工智能领域中的大型预训练模型。你可以把它们想象成非常聪明的大脑,这些大脑通过阅读大量的文本、图片、声音等信息,学习到了世界的知识。这些大脑(模型)非常大,有的甚至有几千亿个参数,这些参数就像是大脑中的神经元,它们通过复杂的计算来理解和生成语言、图片等。举个例子,你可能听说过GPT-3,它就是一个非常著名的大模型。GPT-3可以通过理解你提出的问
- 一文讲清楚CUDA与PyTorch、GPU之间的关系
平凡而伟大.
编程语言人工智能架构设计pytorch人工智能python
CUDA(ComputeUnifiedDeviceArchitecture)是由NVIDIA开发的一个并行计算平台和编程模型。它允许软件开发人员和研究人员利用NVIDIA的GPU(图形处理单元)进行高性能计算。CUDA提供了一系列API和工具,使得开发者能够编写和优化在GPU上运行的计算密集型任务。CUDA与PyTorch、GPU之间的关系可以这样理解:1.CUDA与GPU:GPU:是一种专门用于
- 模型的秘密武器:利用注意力改善长上下文推理能力
步子哥
人工智能自然语言处理深度学习语言模型
【导语】在大语言模型(LLM)不断刷新各项任务记录的今天,很多模型宣称能处理超长上下文内容,但在实际推理过程中,复杂问题往往因隐性事实的遗漏而败下阵来。今天,我们就以《AttentionRevealsMoreThanTokens:Training-FreeLong-ContextReasoningwithAttention-guidedRetrieval》为蓝本,带大家通俗解读如何利用Transf
- 利用A、G、DL、P策略来管理网络资源访问权限
lyuharvey
问题描述:如现在某个企业是通过域来管理的。在域中,有三台打印机,其中,销售部门只能够访问打印机A;管理部门只能够使用打印机B;财务部门可以访问打印机C,当打印机C不能够使用时,则可以使用打印机B。在域中,还有三个共享文件夹,其中文件夹甲是销售部门专用文件夹,只有销售员工以及销售总监与财务总监可以访问;文件夹乙是财务专用文件夹,只有财务部门以及财务总监帐户可以访问;文件夹丙是一个公共文件夹,任何部门
- 红蓝对抗之Windows内网渗透实战
wespten
网络安全AI+渗透测试代码审计等保全栈网络安全开发windows
无论是渗透测试,还是红蓝对抗,目的都是暴露风险,促进提升安全水平。企业往往在外网布置重兵把守,而内网防护相对来说千疮百孔,所以渗透高手往往通过攻击员工电脑、外网服务、职场WiFi等方式进入内网,然后发起内网渗透。而国内外红蓝对抗服务和开源攻击工具大多数以攻击Windows域为主,主要原因是域控拥有上帝能力,可以控制域内所有员工电脑,进而利用员工的合法权限获取目标权限和数据,达成渗透目的。以蓝军攻击
- 机器学习中的梯度下降是什么意思?
yuanpan
机器学习人工智能
梯度下降(GradientDescent)是机器学习中一种常用的优化算法,用于最小化损失函数(LossFunction)。通过迭代调整模型参数,梯度下降帮助模型逐步逼近最优解,从而提升模型的性能。1.核心思想梯度下降的核心思想是利用损失函数的梯度(即导数)来指导参数的更新方向。具体来说:梯度:梯度是损失函数对模型参数的偏导数,表示损失函数在当前参数点上的变化率。下降:通过沿着梯度的反方向(即损失函
- MVVM架构在Android中的DataBinding实现案例
朱佳顺
本文还有配套的精品资源,点击获取简介:本实例展示了如何利用Google官方DataBinding库在Android应用中实现MVVM架构模式。通过DataBinding库,开发者能够简洁地将数据绑定到UI元素,从而提高代码的可读性和可维护性。实例中包括了MVVM架构的核心概念,以及如何使用表达式语言、Observable对象、BindingAdapter、Layout文件和DataBindingU
- 我与DeepSeek读《大型网站技术架构》(4)
诺亚凹凸曼
架构
瞬时响应:网站的高性能架构章节要点本章聚焦于如何通过系统性优化实现网站快速响应,从多层级、多维度剖析了高性能架构的核心策略。1.高性能架构的优化层级(1)前端性能优化目标:减少用户端请求延迟,提升页面加载速度。核心策略:减少HTTP请求:合并CSS/JS文件、使用CSSSprites(雪碧图)。压缩资源:Gzip压缩文本文件(HTML/CSS/JS)、图片优化(WebP格式)。CDN加速:静态资源
- 数字孪生对于新基建的价值浅析,算是抛砖引玉。
大牛工控设计师
人工智能信息可视化前端
数字孪生(DigitalTwin)作为一项融合物理世界与数字世界的关键技术,在新基建中扮演着虚实协同、智能决策、全生命周期管理的核心角色,其价值贯穿于基础设施的设计、建设、运维到优化全流程。一、核心价值:虚实映射与智能决策实时动态映射通过传感器、IoT设备实时采集物理实体(如工厂、城市、电网)的运行数据,构建高精度虚拟模型,实现**“所见即所控”**的透明化管理。模拟预测与优化利用AI和大数据分析
- HarmonyNext实战:基于ArkTS的高性能金融数据可视化应用开发
harmonyos-next
HarmonyNext实战:基于ArkTS的高性能金融数据可视化应用开发引言在金融科技领域,数据可视化是帮助用户快速理解复杂数据的关键工具。随着HarmonyNext的推出,开发者可以利用ArkTS的强大能力,构建高性能、跨平台的金融数据可视化应用。本文将深入探讨如何基于ArkTS开发一个金融数据可视化应用,并通过一个实战案例详细讲解其实现过程。项目背景与需求分析项目背景金融数据通常具有高维度、大
- HarmonyNext实战:基于ArkTS的高性能实时音视频通信应用开发
harmonyos-next
HarmonyNext实战:基于ArkTS的高性能实时音视频通信应用开发引言在HarmonyNext生态系统中,实时音视频通信是一个极具挑战性和实用价值的领域。本文将深入探讨如何利用ArkTS语言开发一个高性能的实时音视频通信应用,涵盖从基础概念到高级优化的完整流程。我们将通过一个实际的案例——实时视频会议应用,来展示如何在HarmonyNext平台上实现高效的音视频通信。1.项目概述1.1目标开
- HarmonyNext实战:基于ArkTS的高性能分布式任务调度系统开发
harmonyos-next
HarmonyNext实战:基于ArkTS的高性能分布式任务调度系统开发引言在HarmonyNext生态系统中,分布式任务调度是一个复杂且关键的技术领域。本文将深入探讨如何利用ArkTS语言开发一个高性能的分布式任务调度系统,涵盖从基础概念到高级优化的完整流程。我们将通过一个实际的案例——分布式计算任务调度系统,来展示如何在HarmonyNext平台上实现高效的任务调度。1.项目概述1.1目标开发
- HarmonyNext实战:基于ArkTS的跨设备分布式数据同步应用开发
harmonyos-next
HarmonyNext实战:基于ArkTS的跨设备分布式数据同步应用开发引言在分布式系统的开发中,跨设备数据同步是一个极具挑战性的问题。随着HarmonyOSNext的发布,ArkTS作为其核心开发语言,为开发者提供了强大的分布式能力。本文将深入探讨如何利用ArkTS在HarmonyNext平台上开发一个跨设备分布式数据同步应用。我们将从分布式数据管理的基础理论出发,逐步构建一个完整的应用,涵盖数
- 2024前端Webpack面试题
司宁
前端面试题前端webpack
1、谈谈你对Webpack的理解Webpack是一个模块打包工具,可以使用它管理项目中的模块依赖,并编译输出模块所需的静态文件。它可以很好地管理、打包开发中所用到的HTML,CSS,JavaScript和静态文件(图片,字体)等,让开发更高效。对于不同类型的依赖,Webpack有对应的模块加载器,而且会分析模块间的依赖关系,最后合并生成优化的静态资源。2、Webpack的基本功能代码转换:Type
- vite静态资源压缩-图片压缩
安装插件:pnpmivite-plugin-imagemin-Dvite.config.ts中使用import{defineConfig,loadEnv}from"vite";importvuefrom"@vitejs/plugin-vue";importviteImageminfrom"vite-plugin-imagemin";//省略其它....return{plugins:[vue(),v
- Cesium高级开发教程之四十八:包络分析
CesiumMaster
Cesium开发教程javascriptCesiumhtml
一、原理包络分析是一种用于确定一组数据点或对象的外包络或边界的分析方法,在GIS中,包络分析用于确定地理要素(如点、线、面等)的外包络范围。例如,在城市规划中,对一片区域内的建筑物、道路等地理要素进行包络分析,可以得到这片区域的大致边界范围,以便进行土地利用规划、资源分配等工作。还可用于分析野生动物的栖息地范围,通过对动物活动轨迹点进行包络分析,确定其栖息地的边界,为野生动物保护提供决策支持。二、
- 基于IMX6ULL的安防监控项目
暗夜之眼007
linux
项目功能介绍该项目是基于NXP的IMX6ULL的安防监控项目。应用http微服务器boa实现网页展示监控信息;利用ov5640摄像头模块采集图像信息,并移植mjpg-streamer库实现在远端网页可以查看实时监控图像;利用cgi与html交互实现控制命令的下发和监控数据上传,用户可以在网页端控制硬件,比如LED灯,蜂鸣器等,同时可以在网页端直观查看ICM20608获取的加速度、角速度和温度数据。
- 增量预训练和微调的区别
做个天秤座的程序猿
大模型原理webkit
文章目录前言一、增量预训练和微调的区别二、代码示例1.增量预训练示例2.微调示例3.代码的区别三、数据格式1.增量预训练2.微调3.示例4.小结四、数据量要求1.指导原则2.示例3.实际操作中的考虑4.小结前言增量预训练是一种在现有预训练模型的基础上,通过引入新的数据或任务来进一步训练模型的方法。这种方法的主要目的是在不从头开始训练模型的情况下,利用新数据或特定领域的数据增强模型的能力和性能。增量
- 漏洞预警 | Apache Tomcat 存在远程代码执行漏洞(CVE-2025-24813)
盛邦安全
apachetomcatjava
漏洞概述漏洞类型远程代码执行漏洞等级高危漏洞编号CVE-2025-24813漏洞评分无利用复杂度中影响版本11.0.0-M1至11.0.210.1.0-M1到10.1.349.0.0.M1到9.0.98利用方式远程POC/EXP已公开近日,ApacheTomcat发布更新修复漏洞(CVE-2025-24813)。为避免您的业务受影响,建议您及时开展安全风险自查。ApacheTomcat是一个Apa
- ESP32-S3一款专为人工智能物联网打造的芯片
LS_learner
嵌入式人工智能物联网嵌入式硬件
ESP32-S3是一款专为AIoT(人工智能物联网)市场打造的MCU(微控制器单元)芯片,集成了2.4GHzWi-Fi和Bluetooth5(LE)功能。以下是对ESP32-S3的详细介绍:一、核心性能处理器:搭载Xtensa®32位LX7双核处理器,主频高达240MHz。内存:内置512KBSRAM(静态随机存取存储器),同时支持更大容量的高速OctalSPIflash和片外RAM,用户可配置数
- Matlab/simulink 风储调频,风电调频,模糊控制,mpc模型预测,虚拟惯性控制,下垂控制。
风储wind-专业frequency
其他
风电采用虚拟惯性控制,储能采用下垂控制。风电利用模糊控制改变系数,根据风速和频率变化系数。做到了自适应控制。MPC通过状态空间表达式通过fk预测下一时刻fk+1频率,仿真结果表明预测频率和实际频率相差不大。因此可以用mpc预测频率,去改变风电出力。这样利用mpc的超前预测能力进而预测风电出力。风电采用虚拟惯性控制。1-模糊控制2-mpc控制。
- 鸿蒙 @ohos.arkui.drawableDescriptor (DrawableDescriptor)
淼学派对
harmonyos华为
鸿蒙@ohos.arkui.drawableDescriptor(DrawableDescriptor)在鸿蒙开发中,@ohos.arkui.drawableDescriptor模块提供了一种强大的方式来处理图片资源,包括普通图片和分层图片(LayeredDrawableDescriptor)。通过这个模块,开发者可以获取图片的PixelMap,并对其进行裁剪、融合等操作。一、模块功能概述@oho
- 利用python 执行统计模型:
渔好学
python
利用python执行统计模型:http://www.statsmodels.org/stable/index.html
- 适合企业内训的AI工具实操培训教程(37页PPT)(文末有下载方式)
极客11
数字化
详细资料请看本解读文章的最后内容。资料解读:适合企业内训的AI工具实操培训教程在当今数字化时代,人工智能(AI)技术迅速发展,深度融入到各个领域,AIGC(人工智能生成内容)更是成为内容创作的新趋势,为企业提升效率、创新发展带来了新契机。这份培训教程聚焦多种AI工具,尤其是DeepSeek,为企业员工提供了全面的实操指导。AIGC指利用人工智能技术自动生成文本、图像、音频、视频等内容,让AI协助甚
- 鸿蒙开发接口UI界面:【@ohos.animator (动画)】
爱桥代码的程序媛
鸿蒙harmonyos鸿蒙开发鸿蒙系统OpenHarmony移动开发程序员ArkUI
动画说明:本模块首批接口从APIversion6开始支持。后续版本的新增接口,采用上角标单独标记接口的起始版本。开发前请熟悉鸿蒙开发指导文档:gitee.com/li-shizhen-skin/harmony-os/blob/master/README.md点击或者复制转到。导入模块importanimatorfrom'@ohos.animator';createAnimatorcreateAni
- 基于ChatGPT和GoogleScholar的文章总结器
莫达菲尼
chatgpt人工智能自然语言处理网络爬虫自动化
在当今信息爆炸的时代,科研人员每天都会面对大量的文献资料。为了更高效地筛选和理解这些资料,我们开发了一款基于ChatGPT和GoogleScholar的文章摘要工具。它能够自动抓取GoogleScholar上的研究文章,并利用OpenAI的GPT模型进行摘要生成,同时支持多语言输出,帮助打破语言障碍,加速科研进程。项目介绍本项目的目标是通过以下两方面提升科研效率:跨语言阅读:通过多语言摘要功能,帮
- fpga驱动rgb液晶屏_以ARM+FPGA结构驱动高分辨率液晶显示设计与效果测试
奶油小馒头
fpga驱动rgb液晶屏
摘要:结合ARM操作灵活和FPGA实时处理的优点,提出采用ARM+FPGA结构驱动高分辨率RGB888液晶显示屏。ARM接口丰富、操作灵活可以满足客户操作方便的需求;FPGA模块采用FPGA+DDR形式,数据存取速度达到400MB/s可以满足画面刷新速度较快的需求;FPGA操作DDR方式采用双端口64bit模式,设计32bit数据读取宽度,实现RGB888数据无失真显示。通过ARM处理器LPC17
- LeetCode[位运算] - #137 Single Number II
Cwind
javaAlgorithmLeetCode题解位运算
原题链接:#137 Single Number II
要求:
给定一个整型数组,其中除了一个元素之外,每个元素都出现三次。找出这个元素
注意:算法的时间复杂度应为O(n),最好不使用额外的内存空间
难度:中等
分析:
与#136类似,都是考察位运算。不过出现两次的可以使用异或运算的特性 n XOR n = 0, n XOR 0 = n,即某一
- 《JavaScript语言精粹》笔记
aijuans
JavaScript
0、JavaScript的简单数据类型包括数字、字符创、布尔值(true/false)、null和undefined值,其它值都是对象。
1、JavaScript只有一个数字类型,它在内部被表示为64位的浮点数。没有分离出整数,所以1和1.0的值相同。
2、NaN是一个数值,表示一个不能产生正常结果的运算结果。NaN不等于任何值,包括它本身。可以用函数isNaN(number)检测NaN,但是
- 你应该更新的Java知识之常用程序库
Kai_Ge
java
在很多人眼中,Java 已经是一门垂垂老矣的语言,但并不妨碍 Java 世界依然在前进。如果你曾离开 Java,云游于其它世界,或是每日只在遗留代码中挣扎,或许是时候抬起头,看看老 Java 中的新东西。
Guava
Guava[gwɑ:və],一句话,只要你做Java项目,就应该用Guava(Github)。
guava 是 Google 出品的一套 Java 核心库,在我看来,它甚至应该
- HttpClient
120153216
httpclient
/**
* 可以传对象的请求转发,对象已流形式放入HTTP中
*/
public static Object doPost(Map<String,Object> parmMap,String url)
{
Object object = null;
HttpClient hc = new HttpClient();
String fullURL
- Django model字段类型清单
2002wmj
django
Django 通过 models 实现数据库的创建、修改、删除等操作,本文为模型中一般常用的类型的清单,便于查询和使用: AutoField:一个自动递增的整型字段,添加记录时它会自动增长。你通常不需要直接使用这个字段;如果你不指定主键的话,系统会自动添加一个主键字段到你的model。(参阅自动主键字段) BooleanField:布尔字段,管理工具里会自动将其描述为checkbox。 Cha
- 在SQLSERVER中查找消耗CPU最多的SQL
357029540
SQL Server
返回消耗CPU数目最多的10条语句
SELECT TOP 10
total_worker_time/execution_count AS avg_cpu_cost, plan_handle,
execution_count,
(SELECT SUBSTRING(text, statement_start_of
- Myeclipse项目无法部署,Undefined exploded archive location
7454103
eclipseMyEclipse
做个备忘!
错误信息为:
Undefined exploded archive location
原因:
在工程转移过程中,导致工程的配置文件出错;
解决方法:
 
- GMT时间格式转换
adminjun
GMT时间转换
普通的时间转换问题我这里就不再罗嗦了,我想大家应该都会那种低级的转换问题吧,现在我向大家总结一下如何转换GMT时间格式,这种格式的转换方法网上还不是很多,所以有必要总结一下,也算给有需要的朋友一个小小的帮助啦。
1、可以使用
SimpleDateFormat SimpleDateFormat
EEE-三位星期
d-天
MMM-月
yyyy-四位年
- Oracle数据库新装连接串问题
aijuans
oracle数据库
割接新装了数据库,客户端登陆无问题,apache/cgi-bin程序有问题,sqlnet.log日志如下:
Fatal NI connect error 12170.
VERSION INFORMATION: TNS for Linux: Version 10.2.0.4.0 - Product
- 回顾java数组复制
ayaoxinchao
java数组
在写这篇文章之前,也看了一些别人写的,基本上都是大同小异。文章是对java数组复制基础知识的回顾,算是作为学习笔记,供以后自己翻阅。首先,简单想一下这个问题:为什么要复制数组?我的个人理解:在我们在利用一个数组时,在每一次使用,我们都希望它的值是初始值。这时我们就要对数组进行复制,以达到原始数组值的安全性。java数组复制大致分为3种方式:①for循环方式 ②clone方式 ③arrayCopy方
- java web会话监听并使用spring注入
bewithme
Java Web
在java web应用中,当你想在建立会话或移除会话时,让系统做某些事情,比如说,统计在线用户,每当有用户登录时,或退出时,那么可以用下面这个监听器来监听。
import java.util.ArrayList;
import java.ut
- NoSQL数据库之Redis数据库管理(Redis的常用命令及高级应用)
bijian1013
redis数据库NoSQL
一 .Redis常用命令
Redis提供了丰富的命令对数据库和各种数据库类型进行操作,这些命令可以在Linux终端使用。
a.键值相关命令
b.服务器相关命令
1.键值相关命令
&
- java枚举序列化问题
bingyingao
java枚举序列化
对象在网络中传输离不开序列化和反序列化。而如果序列化的对象中有枚举值就要特别注意一些发布兼容问题:
1.加一个枚举值
新机器代码读分布式缓存中老对象,没有问题,不会抛异常。
老机器代码读分布式缓存中新对像,反序列化会中断,所以在所有机器发布完成之前要避免出现新对象,或者提前让老机器拥有新增枚举的jar。
2.删一个枚举值
新机器代码读分布式缓存中老对象,反序列
- 【Spark七十八】Spark Kyro序列化
bit1129
spark
当使用SparkContext的saveAsObjectFile方法将对象序列化到文件,以及通过objectFile方法将对象从文件反序列出来的时候,Spark默认使用Java的序列化以及反序列化机制,通常情况下,这种序列化机制是很低效的,Spark支持使用Kyro作为对象的序列化和反序列化机制,序列化的速度比java更快,但是使用Kyro时要注意,Kyro目前还是有些bug。
Spark
- Hybridizing OO and Functional Design
bookjovi
erlanghaskell
推荐博文:
Tell Above, and Ask Below - Hybridizing OO and Functional Design
文章中把OO和FP讲的深入透彻,里面把smalltalk和haskell作为典型的两种编程范式代表语言,此点本人极为同意,smalltalk可以说是最能体现OO设计的面向对象语言,smalltalk的作者Alan kay也是OO的最早先驱,
- Java-Collections Framework学习与总结-HashMap
BrokenDreams
Collections
开发中常常会用到这样一种数据结构,根据一个关键字,找到所需的信息。这个过程有点像查字典,拿到一个key,去字典表中查找对应的value。Java1.0版本提供了这样的类java.util.Dictionary(抽象类),基本上支持字典表的操作。后来引入了Map接口,更好的描述的这种数据结构。
&nb
- 读《研磨设计模式》-代码笔记-职责链模式-Chain Of Responsibility
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 业务逻辑:项目经理只能处理500以下的费用申请,部门经理是1000,总经理不设限。简单起见,只同意“Tom”的申请
* bylijinnan
*/
abstract class Handler {
/*
- Android中启动外部程序
cherishLC
android
1、启动外部程序
引用自:
http://blog.csdn.net/linxcool/article/details/7692374
//方法一
Intent intent=new Intent();
//包名 包名+类名(全路径)
intent.setClassName("com.linxcool", "com.linxcool.PlaneActi
- summary_keep_rate
coollyj
SUM
BEGIN
/*DECLARE minDate varchar(20) ;
DECLARE maxDate varchar(20) ;*/
DECLARE stkDate varchar(20) ;
DECLARE done int default -1;
/* 游标中 注册服务器地址 */
DE
- hadoop hdfs 添加数据目录出错
daizj
hadoophdfs扩容
由于原来配置的hadoop data目录快要用满了,故准备修改配置文件增加数据目录,以便扩容,但由于疏忽,把core-site.xml, hdfs-site.xml配置文件dfs.datanode.data.dir 配置项增加了配置目录,但未创建实际目录,重启datanode服务时,报如下错误:
2014-11-18 08:51:39,128 WARN org.apache.hadoop.h
- grep 目录级联查找
dongwei_6688
grep
在Mac或者Linux下使用grep进行文件内容查找时,如果给定的目标搜索路径是当前目录,那么它默认只搜索当前目录下的文件,而不会搜索其下面子目录中的文件内容,如果想级联搜索下级目录,需要使用一个“-r”参数:
grep -n -r "GET" .
上面的命令将会找出当前目录“.”及当前目录中所有下级目录
- yii 修改模块使用的布局文件
dcj3sjt126com
yiilayouts
方法一:yii模块默认使用系统当前的主题布局文件,如果在主配置文件中配置了主题比如: 'theme'=>'mythm', 那么yii的模块就使用 protected/themes/mythm/views/layouts 下的布局文件; 如果未配置主题,那么 yii的模块就使用 protected/views/layouts 下的布局文件, 总之默认不是使用自身目录 pr
- 设计模式之单例模式
come_for_dream
设计模式单例模式懒汉式饿汉式双重检验锁失败无序写入
今天该来的面试还没来,这个店估计不会来电话了,安静下来写写博客也不错,没事翻了翻小易哥的博客甚至与大牛们之间的差距,基础知识不扎实建起来的楼再高也只能是危楼罢了,陈下心回归基础把以前学过的东西总结一下。
*********************************
- 8、数组
豆豆咖啡
二维数组数组一维数组
一、概念
数组是同一种类型数据的集合。其实数组就是一个容器。
二、好处
可以自动给数组中的元素从0开始编号,方便操作这些元素
三、格式
//一维数组
1,元素类型[] 变量名 = new 元素类型[元素的个数]
int[] arr =
- Decode Ways
hcx2013
decode
A message containing letters from A-Z is being encoded to numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
Given an encoded message containing digits, det
- Spring4.1新特性——异步调度和事件机制的异常处理
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- squid3(高命中率)缓存服务器配置
liyonghui160com
系统:centos 5.x
需要的软件:squid-3.0.STABLE25.tar.gz
1.下载squid
wget http://www.squid-cache.org/Versions/v3/3.0/squid-3.0.STABLE25.tar.gz
tar zxf squid-3.0.STABLE25.tar.gz &&
- 避免Java应用中NullPointerException的技巧和最佳实践
pda158
java
1) 从已知的String对象中调用equals()和equalsIgnoreCase()方法,而非未知对象。 总是从已知的非空String对象中调用equals()方法。因为equals()方法是对称的,调用a.equals(b)和调用b.equals(a)是完全相同的,这也是为什么程序员对于对象a和b这么不上心。如果调用者是空指针,这种调用可能导致一个空指针异常
Object unk
- 如何在Swift语言中创建http请求
shoothao
httpswift
概述:本文通过实例从同步和异步两种方式上回答了”如何在Swift语言中创建http请求“的问题。
如果你对Objective-C比较了解的话,对于如何创建http请求你一定驾轻就熟了,而新语言Swift与其相比只有语法上的区别。但是,对才接触到这个崭新平台的初学者来说,他们仍然想知道“如何在Swift语言中创建http请求?”。
在这里,我将作出一些建议来回答上述问题。常见的
- Spring事务的传播方式
uule
spring事务
传播方式:
新建事务
required
required_new - 挂起当前
非事务方式运行
supports
&nbs