Pathon中numpy模块

目录

  • numpy模块
  • 切割矩阵
  • 矩阵元素替换
    • 矩阵的合并
  • 通过函数创建矩阵
  • fromstring/fromfunctions
  • 矩阵的运算
  • 常用矩阵运函数
  • 矩阵的点乘
  • 矩阵的逆
  • 矩阵的其他操作
  • numpy生成随机数

numpy模块

numpy官方文档:[https://docs.scipy.org/doc/numpy/reference/?v=20190307135750]

import numpy as np
arr = np.array([1,2,3])
print(arr, type(arr))
[1 2 3] 
# 创建二维ndarray对象
print(np.array([[1,2,3,4],[5,6,7]]))  # 数据不齐显示两个列表
[list([1, 2, 3, 4]) list([5, 6, 7])]
print(np.array([[1,2,3,4],[5,6,7,8]]))
[[1 2 3 4]
 [5 6 7 8]]
# 创建三维的ndarray对象  # 多层二维数组嵌套
print(np.array([[[1,2,3,4],[5,6,7,8]],
                
                [[1,2,3,4],[5,6,7,8]],
                
               [[1,2,3,4],[5,6,7,8]]]))
[[[1 2 3 4]
  [5 6 7 8]]

 [[1 2 3 4]
  [5 6 7 8]]

 [[1 2 3 4]
  [5 6 7 8]]]
arr = np.array([[1,2,3],[4,5,6]])
print(arr)
[[1 2 3]
 [4 5 6]]
# 获取矩阵的行和列结构,返回元组
print(arr.shape)
(2, 3)
print(arr.shape[0],arr.shape[1])
2 3

切割矩阵

  • 切分矩阵类似于列表的切割,矩阵的切割涉及到行和列,但是两者切割方式都是从0开始,左闭右开的区间
arr = np.array([[1,2,3,4,5],[5,6,7,8,9],[10,11,12,13,14]])
print(arr)
[[ 1  2  3  4  5]
 [ 5  6  7  8  9]
 [10 11 12 13 14]]
# 取所有元素
print(arr[:,:])
[[ 1  2  3  4]
 [ 5  6  7  8]
 [ 9 10 11 12]]
# 取一行所有元素
print(arr[:1,:])
[[1 2 3 4]]
# 取一列所有元素
print(arr[:,:1])
[[1]
 [5]
 [9]]
print(arr[(0,1,2),0]) # numpy0是列
[1 5 9]
# 取大于5的元素,返回一个数组
print(arr[arr>5])
[ 6  7  8  9 10 11 12 13 14]

矩阵元素替换

  • 矩阵元素替换类似于列表元素替换,如果对矩阵进行替换操作,会修改原矩阵的元素
arr = np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12]])
print(arr)
[[ 1  2  3  4]
 [ 5  6  7  8]
 [ 9 10 11 12]]
# 取一行的所有元素,并让第一行的元素都为0
arr1 = arr.copy()
arr1[:1,:] = 0
print(arr1)
[[ 0  0  0  0]
 [ 5  6  7  8]
 [ 9 10 11 12]]
# 取所有大于5的元素,并让大于5的元素为0
arr2 = arr.copy()
arr2[arr > 5] = 0
print(arr2)
[[1 2 3 4]
 [5 0 0 0]
 [0 0 0 0]]
# 对矩阵请零
arr3 = arr.copy()
arr3[:,:] = 0
print(arr3)
[[0 0 0 0]
 [0 0 0 0]
 [0 0 0 0]]

矩阵的合并

arr1 = np.array([[1,33,2],[3,53,4],[5,32,46]])
print(arr1)
[[ 1 33  2]
 [ 3 53  4]
 [ 5 32 46]]
arr2 = np.array([[7,8],[23,4],[3,3]])
print(arr2)
[[ 7  8]
 [23  4]
 [ 3  3]]

合并两个矩阵的行,注意使用hstack()方法合并矩阵,矩阵应该有相同的行,其中hstack的h表示horzzontal水平的

# 合并两个矩阵的行,注意使用hstack()方法合并矩阵,矩阵应该有相同的行,其中hstack的h表示horzzontal水平的
print(np.hstack((arr1, arr2)))
[[ 1 33  2  7  8]
 [ 3 53  4 23  4]
 [ 5 32 46  3  3]]

合并两个矩阵,其中axis=1表示合并两个矩阵的行

print(np.concatenate((arr1,arr2),axis = 1))
[[ 1 33  2  7  8]
 [ 3 53  4 23  4]
 [ 5 32 46  3  3]]
# 合并两个矩阵的列,注意使用vstack()方法合并矩阵,矩阵应该会有相同的列,其中vstack的v表示vertical垂直的
# 合并两个矩阵,其中axis= 0表示合并两个矩阵的列
arr3 = np.array([[1,33,2],[3,53,4]])
print(arr3)
print('*'*20)
arr4 = np.array([[1,33,2],[5,32,46]])
print(arr4)
print('*'*20)
print(np.vstack((arr3, arr4)))
# print(np.concatenate((arr3,arr4),axis = 0))
[[ 1 33  2]
 [ 3 53  4]]
********************
[[ 1 33  2]
 [ 5 32 46]]
********************
[[ 1 33  2]
 [ 3 53  4]
 [ 1 33  2]
 [ 5 32 46]]

通过函数创建矩阵

# arange
# arange 构造0-9的ndarray数组
print(np.arange(10))
[0 1 2 3 4 5 6 7 8 9]
# 构造1-20步长为3 的ndarray数组
print(np.arange(1,20,3))
[ 1  4  7 10 13 16 19]
# linspace/logspace
# 构造一个等差数列,取头也取尾,从0-20取5个数
print(np.arange(0,20,5))
[ 0  5 10 15]
# 构造一个等比数列,从10**0 到10**20, 取五个数
print(np.logspace(0,20,5))
[1.e+00 1.e+05 1.e+10 1.e+15 1.e+20]
# zeros/ ones/eye/empty
# 构造3*4的全0矩阵
print(np.zeros((3,4)))
[[0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]]
# 构造3*4 的全1矩阵
print(np.ones((3,4)))
[[1. 1. 1. 1.]
 [1. 1. 1. 1.]
 [1. 1. 1. 1.]]
# 构造3个主元的单位矩阵
print(np.eye(3))
[[1. 0. 0.]
 [0. 1. 0.]
 [0. 0. 1.]]
# 构造一个4*4的随机矩阵,里面的元素全是随机生成的
print(np.empty(4*4))
[2.22838829e-312 0.00000000e+000 3.62633684e+228 1.83077623e+280
 9.00090667e+223 2.54452700e+179 7.24618769e-154 2.13941344e-105
 2.71084864e-074 4.15107308e+223 3.74567055e+233 3.10275055e-115
 4.25114573e-096 9.78750380e+199 6.97843734e+252 2.65690549e-312]

fromstring/fromfunctions

  • formstring是通过对字符串的字符码所对应的ASCII编码的位置,生成一个ndarray对象
    s = 'abcdef'
    np.int8表示一个字符的字节数为8
s = 'abcdef'
print(np.fromstring(s, dtype=np.int8))
[ 97  98  99 100 101 102]


e:\python3.7\lib\site-packages\ipykernel_launcher.py:2: DeprecationWarning: The binary mode of fromstring is deprecated, as it behaves surprisingly on unicode inputs. Use frombuffer instead

def func(i,j):
    '''其中i为矩阵的行,j为矩阵的列'''
    return i*j

# 使用函数对矩阵元素的行和列的索引做处理,得到当前元素的值,索引从0开始,并构造一个3*4的矩阵
print(np.fromfunction(func,(3,4)))
[[0. 0. 0. 0.]
 [0. 1. 2. 3.]
 [0. 2. 4. 6.]]

矩阵的运算

运算符 说明

  • + 两个矩阵对应元素相加
  • - 两个矩阵对应元素相减
  • 两个矩阵对应元素相乘
  • / 两个矩阵对应元素相除,如果都是整数则取商
  • % 两个矩阵对应元素相除后取余数
  • **n单个矩阵每个元素都取\n次方,如**2:每个元素都取平方
arrarr1 = np.array([[1,2],[3,4],[5,6]])
print(arr1)
[[ 1 33  2]
 [ 3 53  4]
 [ 5 32 46]]
srr2 = np.array([[7,8],[11,12],[32,1]])
print(arr2)
[[ 7  8]
 [23  4]
 [ 3  3]]
print(arrarr1+srr2)
[[ 8 10]
 [14 16]
 [37  7]]
print(arrarr1 ** 2)
[[ 1  4]
 [ 9 16]
 [25 36]]

常用矩阵运函数

  • 矩阵函数 详解
  • np.sin(arr) 对矩阵arr中每个元素取正弦,sin(x)
  • np.cos(arr) 对矩阵arr中每个元素取余弦,cos(x)
  • np.tan(arr) 对矩阵arr中每个元素取正切,tan(x)
  • np.arcsin(arr) 对矩阵arr中每个元素取反正弦,arcsin(x)
  • np.arccos(arr) 对矩阵arr中每个元素取反余弦,arccos(x)
  • np.arctan(arr) 对矩阵arr中每个元素取反正切,arctan(x)
  • np.exp(arr) 对矩阵arr中每个元素取指数函数,ex
  • np.sqrt(arr) 对矩阵arr中每个元素开根号√-x
arr = np.array([[1,2,3,4],[5,6,7,8],[9,11,12,18]])
print(arr)
[[ 1  2  3  4]
 [ 5  6  7  8]
 [ 9 11 12 18]]
# 对矩阵的所有元素去正弦

print(np.sin(arr))
[[ 0.84147098  0.90929743  0.14112001 -0.7568025 ]
 [-0.95892427 -0.2794155   0.6569866   0.98935825]
 [ 0.41211849 -0.99999021 -0.53657292 -0.75098725]]
# 对矩阵的所有元素开根号
print(np.sin(arr))
[[ 0.84147098  0.90929743  0.14112001 -0.7568025 ]
 [-0.95892427 -0.2794155   0.6569866   0.98935825]
 [ 0.41211849 -0.99999021 -0.53657292 -0.75098725]]
# 对矩阵的所有元素取反弦,如果元素不在定义域内,则会取nan值
print(np.arcsin(arr))
[[1.57079633        nan        nan        nan]
 [       nan        nan        nan        nan]
 [       nan        nan        nan        nan]]


e:\python3.7\lib\site-packages\ipykernel_launcher.py:2: RuntimeWarning: invalid value encountered in arcsin

矩阵的点乘

  • 矩阵的点乘必须满足第一个矩阵的列数等于第二个矩阵的行数
arr1 = np.array([[1,2,3],[4,5,6]])
print(arr.shape)
(3, 4)
arr5 = np.array([[7,8],[9,10],[11,12]])
print(arr5.shape)
(3, 2)
assert arr1.shape[0] == arr2.shape[1]
print(arr1.dot(arr2))
[[ 58 181]
 [139 388]]
# 矩阵的转置
arr = np.array([[1,2,3],[4,5,6]])
print(arr)
[[1 2 3]
 [4 5 6]]
print(arr.T)
array([[1, 4],
       [2, 5],
       [3, 6]])

矩阵的逆

  • 矩阵的行和列相同时,矩阵才可逆
arr = np.array([[1,2,3],[4,5,6],[7,8,9]])
print(arr)
[[1 2 3]
 [4 5 6]
 [7 8 9]]
print(np.linalg.inv(arr))
[[-4.50359963e+15  9.00719925e+15 -4.50359963e+15]
 [ 9.00719925e+15 -1.80143985e+16  9.00719925e+15]
 [-4.50359963e+15  9.00719925e+15 -4.50359963e+15]]
# 单位矩阵的逆是单位矩阵本身
arr = np.eye(3)
print(arr)
[[1. 0. 0.]
 [0. 1. 0.]
 [0. 0. 1.]]
print(np.linalg.inv(arr))
[[1. 0. 0.]
 [0. 1. 0.]
 [0. 0. 1.]]

矩阵的其他操作

  • 最大最小值
  • 平均值
  • 标准差
  • 方差
  • 中位数
  • 矩阵求和
  • 累加和
arr = np.array([[1,2,3],[4,5,6],[7,8,9]])
print(arr)
[[1 2 3]
 [4 5 6]
 [7 8 9]]
# 获取最大值/最小值
print(arr.max())
print(arr.min())
9
1
# 获取每一列的最大值
print(arr.max(axis= 0))
[7 8 9]
# 获取每一行的最大值
print(arr.max(axis = 1))
[3 6 9]
# 获取矩阵最大元素的索引位置
print(arr.argmax(axis=1))
[2 2 2]
# 平均值
print(arr.mean())
5.0
# 获取每一列的平均值   0 表示列
# 获取每一行的票据纸   1 表示行
print(arr.mean(axis=0))
print(arr.mean(axis=1))
[4. 5. 6.]
[2. 5. 8.]
# 获取所有元素的方差
print(arr.var())
6.666666666666667
# 获取矩阵每一列元素的方差
# 获取矩阵每一行元素的方差
print(arr.var(axis=0))
print(arr.var(axis=1))
[6. 6. 6.]
[0.66666667 0.66666667 0.66666667]
# 获取所有元素的标准差
# 获取每一列的标准差
# 获取每一行的标准差
print(arr.std())
print(arr.std(axis=0))
print(arr.std(axis=1))
2.581988897471611
[2.44948974 2.44948974 2.44948974]
[0.81649658 0.81649658 0.81649658]
# 中位数
# 获取所有元素的中位数
# 获取每一列的中位数
# 获取每一行的中位数
print(np.median(arr))
print(np.median(arr,axis = 0))
print(np.median(arr,axis = 1))
5.0
[4. 5. 6.]
[2. 5. 8.]
# 矩阵求和
# 对矩阵每一个元素求和
# 对矩阵每一列求和
# 对矩阵每一行求和
print(arr.sum())
print(arr.sum(axis=0))
print(arr.sum(axis=1))
45
[12 15 18]
[ 6 15 24]

numpy生成随机数

函数名称 数功能 参数说明
rand(d0,d1,⋯,dn) 产生[0,1)内的均匀分布的随机数 dn为第n维数据的维度
randn(d0,d1,⋯,dn) 产生标准正态分布随机数 dn为第n维数据的维度
randint(low[, high, size, dtype]) 产生随机整数 low:最小值;high:最大值;size:数据个数
random_sample([size]) 在[0,1)内产生随机数 size为随机数的shape,可以为元祖或者列表
choice(a[, size]) 从arr中随机选择指定数据 arr为1维数组;size为数据形状
# RandomState()方法会让数据随机一次,之后都是相同的数据
rs=np.random.RandomState(1)
print(rs.rand(10))
[4.17022005e-01 7.20324493e-01 1.14374817e-04 3.02332573e-01
 1.46755891e-01 9.23385948e-02 1.86260211e-01 3.45560727e-01
 3.96767474e-01 5.38816734e-01]
# 构造3*4的均匀分布的矩阵
# seed()方法会让数据随机一次,之后都是相同的数据
np.random.seed(1)
print(np.random.rand(3,4))
[[4.17022005e-01 7.20324493e-01 1.14374817e-04 3.02332573e-01]
 [1.46755891e-01 9.23385948e-02 1.86260211e-01 3.45560727e-01]
 [3.96767474e-01 5.38816734e-01 4.19194514e-01 6.85219500e-01]]

你可能感兴趣的:(Pathon中numpy模块)