目录
- Django 单表操作
- 1 按步骤创建表
- 1.1
- 1.2
- 1.3
- 1.4
- 1.5
- 1.6
- 1.7
- 1.8
- 2 记录
- 2.1 添加记录
- 2.2 查询记录
- 1 按步骤创建表
Django 单表操作
1 按步骤创建表
1.1
创建django项目,新建名为app01的app,在app01的models.py中创建模型
class Employee(models.Model): # 必须是models.Model的子类
id=models.AutoField(primary_key=True)
name=models.CharField(max_length=16)
gender=models.BooleanField(default=1)
birth=models.DateField()
department=models.CharField(max_length=30)
salary=models.DecimalField(max_digits=10,decimal_places=1)
1.2
django的orm支持多种数据库,如果想将上述模型转为mysql数据库中的表,需要settings.py中
# 删除\注释掉原来的DATABASES配置项,新增下述配置
DATABASES = {
'default': {
'ENGINE': 'django.db.backends.mysql', # 使用mysql数据库
'NAME': 'db1', # 要连接的数据库
'USER': 'root', # 链接数据库的用于名
'PASSWORD': '', # 链接数据库的用于名
'HOST': '127.0.0.1', # mysql服务监听的ip
'PORT': 3306, # mysql服务监听的端口
'ATOMIC_REQUEST': True, #设置为True代表同一个http请求所对应的所有sql都 放在一个事务中执行
#(要么所有都成功,要么所有都失败),这是全局性的配 置,如果要对某个
#http请求放水(然后自定义事务),可以用 non_atomic_requests修饰器
'OPTIONS': {
"init_command": "SET storage_engine=INNODB", #设置创建表的存储引 擎为INNODB
}
}
}
1.3
在链接mysql数据库前,必须事先创建好数据库
mysql> create database db1; # 数据库名必须与settings.py中指定的名字对应上
1.4
确保配置文件settings.py中的INSTALLED_APPS中添加我们创建的app名称,django2.x与django1.x处理添加方式不同
# django1.x版本,在下述列表中新增我们的app名字即可
INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'app01',
# 'app02' # 若有新增的app,依次添加即可
]
# django2.x版本,可能会帮我们自动添加app,只是换了一种添加方式
INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'app01.apps.App01Config', # 如果默认已经添加了,则无需重复添加
# 'app02.apps.App02Config', # 若有新增的app,按照规律依次添加即可
]
1.5
如果想打印orm转换过程中的sql,需要在settings中进行配置日志:
LOGGING = {
'version': 1,
'disable_existing_loggers': False,
'handlers': {
'console':{
'level':'DEBUG',
'class':'logging.StreamHandler',
},
},
'loggers': {
'django.db.backends': {
'handlers': ['console'],
'propagate': True,
'level':'DEBUG',
},
}
}
1.6
最后我们需要的驱动是PyMySQL,然后在命令行中执行两条数据库迁移命令,即可在指定的数据库db1中创建表 :
NAME即数据库的名字,在mysql连接前该数据库必须已经创建,而上面的sqlite数据库下的db.sqlite3则是项目自动创建 USER和PASSWORD分别是数据库的用户名和密码。设置完后,再启动我们的Django项目前,我们需要激活我们的mysql。然后,启动项目,会报错:no module named MySQLdb 。这是因为django默认你导入的驱动是MySQLdb,可是MySQLdb 对于py3有很大问题,所以我们需要的驱动是PyMySQL 所以,我们只需要找到项目名文件下的__init__,在里面写入:
import pymysql
pymysql.install_as_MySQLdb()
$ python manage.py makemigrations
$ python manage.py migrate
# 注意:
# 1、makemigrations只是生成一个数据库迁移记录的文件,而migrate才是将更改真正提交到数据库执行
# 2、数据库迁移记录的文件存放于app01下的migrations文件夹里
# 3、了解:使用命令python manage.py showmigrations可以查看没有执行migrate的文件
注意1:
在使用的是django1.x版本时,如果报如下错误
django.core.exceptions.ImproperlyConfigured: mysqlclient 1.3.3 or newer is required; you have 0.7.11.None
那是因为MySQLclient目前只支持到python3.4,如果使用的更高版本的python,需要找到文件C:\Programs\Python\Python36-32\Lib\site-packages\Django-2.0-py3.6.egg\django\db\backends\mysql
这个路径里的文件
# 注释下述两行内容即可
if version < (1, 3, 3):
raise ImproperlyConfigured("mysqlclient 1.3.3 or newer is required; you have %s" % Database.__version__)
注意2:
当我们直接去数据库里查看生成的表时,会发现数据库中的表与orm规定的并不一致,这完全是正常的,事实上,orm的字段约束就是不会全部体现在数据库的表中,比如我们为字段gender设置的默认值default=1,去数据库中查看会发现该字段的default部分为null
mysql> desc app01_employee; # 数据库中标签前会带有前缀app01_
+------------+---------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+------------+---------------+------+-----+---------+----------------+
| id | int(11) | NO | PRI | NULL | auto_increment |
| name | varchar(16) | NO | | NULL | |
| gender | tinyint(1) | NO | | NULL | |
| birth | date | NO | | NULL | |
| department | varchar(30) | NO | | NULL | |
| salary | decimal(10,1) | NO | | NULL | |
+------------+---------------+------+-----+---------+----------------+
,虽然数据库没有增加默认值,但是我们在使用orm插入值时,完全为gender字段插入空,orm会按照自己的约束将空转换成默认值后,再提交给数据库执行
1.7
在表生成之后,如果需要增加、删除、修改表中字段,需要这么做
# 一:增加字段
#1.1、在模型类Employee里直接新增字段,强调:对于orm来说,新增的字段必须用default指定默认值
publish = models.CharField(max_length=12,default='人民出版社',null=True)
#1.2、重新执行那两条数据库迁移命令
# 二:删除字段
#2.1 直接注释掉字段
#2.2 重新执行那两条数据库迁移命令
# 三:修改字段
#2.1 将模型类中字段修改
#2.2 重新执行那两条数据库迁移命令
1.8
更多字段和参数
每个字段有一些特有的参数,例如,CharField需要max_length参数来指定VARCHAR
数据库字段的大小。还有一些适用于所有字段的通用参数。 这些参数在文档中有详细定义,这里我们只简单介绍一些最常用的:
字段
AutoField(Field)
- int自增列,必须填入参数 primary_key=True
BigAutoField(AutoField)
- bigint自增列,必须填入参数 primary_key=True
注:当model中如果没有自增列,则自动会创建一个列名为id的列
from django.db import models
class UserInfo(models.Model):
# 自动创建一个列名为id的且为自增的整数列
username = models.CharField(max_length=32)
class Group(models.Model):
# 自定义自增列
nid = models.AutoField(primary_key=True)
name = models.CharField(max_length=32)
SmallIntegerField(IntegerField):
- 小整数 -32768 ~ 32767
PositiveSmallIntegerField(PositiveIntegerRelDbTypeMixin, IntegerField)
- 正小整数 0 ~ 32767
IntegerField(Field)
- 整数列(有符号的) -2147483648 ~ 2147483647
PositiveIntegerField(PositiveIntegerRelDbTypeMixin, IntegerField)
- 正整数 0 ~ 2147483647
BigIntegerField(IntegerField):
- 长整型(有符号的) -9223372036854775808 ~ 9223372036854775807
自定义无符号整数字段
class UnsignedIntegerField(models.IntegerField):
def db_type(self, connection):
return 'integer UNSIGNED'
PS: 返回值为字段在数据库中的属性,Django字段默认的值为:
'AutoField': 'integer AUTO_INCREMENT',
'BigAutoField': 'bigint AUTO_INCREMENT',
'BinaryField': 'longblob',
'BooleanField': 'bool',
'CharField': 'varchar(%(max_length)s)',
'CommaSeparatedIntegerField': 'varchar(%(max_length)s)',
'DateField': 'date',
'DateTimeField': 'datetime',
'DecimalField': 'numeric(%(max_digits)s, %(decimal_places)s)',
'DurationField': 'bigint',
'FileField': 'varchar(%(max_length)s)',
'FilePathField': 'varchar(%(max_length)s)',
'FloatField': 'double precision',
'IntegerField': 'integer',
'BigIntegerField': 'bigint',
'IPAddressField': 'char(15)',
'GenericIPAddressField': 'char(39)',
'NullBooleanField': 'bool',
'OneToOneField': 'integer',
'PositiveIntegerField': 'integer UNSIGNED',
'PositiveSmallIntegerField': 'smallint UNSIGNED',
'SlugField': 'varchar(%(max_length)s)',
'SmallIntegerField': 'smallint',
'TextField': 'longtext',
'TimeField': 'time',
'UUIDField': 'char(32)',
BooleanField(Field)
- 布尔值类型
NullBooleanField(Field):
- 可以为空的布尔值
CharField(Field)
- 字符类型
- 必须提供max_length参数, max_length表示字符长度
TextField(Field)
- 文本类型
EmailField(CharField):
- 字符串类型,Django Admin以及ModelForm中提供验证机制
IPAddressField(Field)
- 字符串类型,Django Admin以及ModelForm中提供验证 IPV4 机制
GenericIPAddressField(Field)
- 字符串类型,Django Admin以及ModelForm中提供验证 Ipv4和Ipv6
- 参数:
protocol,用于指定Ipv4或Ipv6, 'both',"ipv4","ipv6"
unpack_ipv4, 如果指定为True,则输入::ffff:192.0.2.1时候,可解析为192.0.2.1,开启刺功能,需要protocol="both"
URLField(CharField)
- 字符串类型,Django Admin以及ModelForm中提供验证 URL
SlugField(CharField)
- 字符串类型,Django Admin以及ModelForm中提供验证支持 字母、数字、下划线、连接符(减号)
CommaSeparatedIntegerField(CharField)
- 字符串类型,格式必须为逗号分割的数字
UUIDField(Field)
- 字符串类型,Django Admin以及ModelForm中提供对UUID格式的验证
FilePathField(Field)
- 字符串,Django Admin以及ModelForm中提供读取文件夹下文件的功能
- 参数:
path, 文件夹路径
match=None, 正则匹配
recursive=False, 递归下面的文件夹
allow_files=True, 允许文件
allow_folders=False, 允许文件夹
FileField(Field)
- 字符串,路径保存在数据库,文件上传到指定目录
- 参数:
upload_to = "" 上传文件的保存路径
storage = None 存储组件,默认django.core.files.storage.FileSystemStorage
ImageField(FileField)
- 字符串,路径保存在数据库,文件上传到指定目录
- 参数:
upload_to = "" 上传文件的保存路径
storage = None 存储组件,默认django.core.files.storage.FileSystemStorage
width_field=None, 上传图片的高度保存的数据库字段名(字符串)
height_field=None 上传图片的宽度保存的数据库字段名(字符串)
DateTimeField(DateField)
- 日期+时间格式 YYYY-MM-DD HH:MM[:ss[.uuuuuu]][TZ]
DateField(DateTimeCheckMixin, Field)
- 日期格式 YYYY-MM-DD
TimeField(DateTimeCheckMixin, Field)
- 时间格式 HH:MM[:ss[.uuuuuu]]
DurationField(Field)
- 长整数,时间间隔,数据库中按照bigint存储,ORM中获取的值为datetime.timedelta类型
FloatField(Field)
- 浮点型
DecimalField(Field)
- 10进制小数
- 参数:
max_digits,小数总长度
decimal_places,小数位长度
BinaryField(Field)
- 二进制类型
参数
(1)null
如果为True,Django 将用NULL 来在数据库中存储空值。 默认值是 False.
(1)blank
如果为True,该字段允许不填。默认为False。
要注意,这与 null 不同。null纯粹是数据库范畴的,而 blank 是数据验证范畴的。
如果一个字段的blank=True,表单的验证将允许该字段是空值。如果字段的blank=False,该字段就是必填的。
(2)default
字段的默认值。可以是一个值或者可调用对象。如果可调用 ,每有新对象被创建它都会被调用。
(3)primary_key
如果为True,那么这个字段就是模型的主键。如果你没有指定任何一个字段的primary_key=True,
Django 就会自动添加一个IntegerField字段做为主键,所以除非你想覆盖默认的主键行为,
否则没必要设置任何一个字段的primary_key=True。
(4)unique
如果该值设置为 True, 这个数据字段的值在整张表中必须是唯一的
(5)choices
由二元组组成的一个可迭代对象(例如,列表或元组),用来给字段提供选择项。 如果设置了choices ,默认的表单将是一个选择框而不是标准的文本框,
而且这个选择框的选项就是choices 中的选项。
元信息
class UserInfo(models.Model):
nid = models.AutoField(primary_key=True)
username = models.CharField(max_length=32)
class Meta:
# 数据库中生成的表名称 默认 app名称 + 下划线 + 类名
db_table = "table_name"
# 联合索引
index_together = [
("pub_date", "deadline"),
]
# 联合唯一索引
unique_together = (("driver", "restaurant"),)
# admin中显示的表名称
verbose_name
# verbose_name加s
verbose_name_plural
2 记录
删除,直接注释掉字段,执行数据库迁移命令即可
新增字段,在类里直接新增字段,直接执行数据库迁移命令会提示输入默认值,此时需要设置
publish = models.CharField(max_length=12,default='人民出版社',null=True)
注意:
1 数据库迁移记录都在 app01下的migrations里
2 使用showmigrations命令可以查看没有执行migrate的文件
3 makemigrations是生成一个文件,migrate是将更改提交到数据量
2.1 添加记录
方式一:
# 1、用模型类创建一个对象,一个对象对应数据库表中的一条记录
obj = Employee(name="Egon", gender=0, birth='1997-01-27', department="财务部", salary=100.1)
# 2、调用对象下的save方法,即可以将一条记录插入数据库
obj.save()
方式二:
# 每个模型表下都有一个objects管理器,用于对该表中的记录进行增删改查操作,其中增加操作如下所示
obj = Employee.objects.create(name="Egon", gender=0, birth='1997-01-27', department="财务部", salary=100.1)
2.2 查询记录
2.2.1 查询API
模型Employee对应表app01_employee,表app01_employee中的每条记录都对应类Employee的一个对象,我们以该表为例,来介绍查询API,读者可以自行添加下述记录,然后配置url、编写视图测试下述API
mysql> select * from app01_employee;
+----+-------+--------+------------+------------+--------+
| id | name | gender | birth | department | salary |
+----+-------+--------+------------+------------+--------+
| 1 | Egon | 0 | 1997-01-27 | 财务部 | 100.1 |
| 2 | Kevin | 1 | 1998-02-27 | 技术部 | 10.1 |
| 3 | Lili | 0 | 1990-02-27 | 运营部 | 20.1 |
| 4 | Tom | 1 | 1991-02-27 | 运营部 | 30.1 |
| 5 | Jack | 1 | 1992-02-27 | 技术部 | 11.2 |
| 6 | Robin | 1 | 1988-02-27 | 技术部 | 200.3 |
| 7 | Rose | 0 | 1989-02-27 | 财务部 | 35.1 |
| 8 | Egon | 0 | 1997-01-27 | 财务部 | 100.1 |
| 9 | Egon | 0 | 1997-01-27 | 财务部 | 100.1 |
+----+-------+--------+------------+------------+--------+
每个模型表下都有一个objects管理器,用于对该表中的记录进行增删改查操作,其中查询操作如下所示
Part1:
!!!强调!!!:下述方法(除了count外)的返回值都是一个模型类Employee的对象,为了后续描述方便,我们统一将模型类的对象称为"记录对象",每一个”记录对象“都唯一对应表中的一条记录,
# 1. get(**kwargs)
# 1.1: 有参,参数为筛选条件
# 1.2: 返回值为一个符合筛选条件的记录对象(有且只有一个),如果符合筛选条件的对象超过一个或者没有都会抛出错误。
obj=Employee.objects.get(id=1)
print(obj.name,obj.birth,obj.salary) #输出:Egon 1997-01-27 100.1
# 2、first()
# 2.1:无参
# 2.2:返回查询出的第一个记录对象
obj=Employee.objects.first() # 在表所有记录中取第一个
print(obj.id,obj.name) # 输出:1 Egon
# 3、last()
# 3.1: 无参
# 3.2: 返回查询出的最后一个记录对象
obj = Employee.objects.last() # 在表所有记录中取最后一个
print(obj.id, obj.name) # 输出:9 Egon
# 4、count():
# 4.1:无参
# 4.2:返回包含记录对象的总数量
res = Employee.objects.count() # 统计表所有记录的个数
print(res) # 输出:9
# 注意:如果我们直接打印Employee的对象将没有任何有用的提示信息,我们可以在模型类中定义__str__来进行定制
class Employee(models.Model):
......
# 在原有的基础上新增代码如下
def __str__(self):
return "<%s:%s>" %(self.id,self.name)
# 此时我们print(obj)显示的结果就是: <本条记录中id字段的值:本条记录中name字段的值>
Part2:
!!!强调!!!:下述方法查询的结果都有可能包含多个记录对象,为了存放查询出的多个记录对象,django的ORM自定义了一种数据类型Queryeset,所以下述方法的返回值均为QuerySet类型的对象,QuerySet对象中包含了查询出的多个记录对象
# 1、filter(**kwargs):
# 1.1:有参,参数为过滤条件
# 1.2:返回值为QuerySet对象,QuerySet对象中包含了符合过滤条件的多个记录对象
queryset_res=Employee.objects.filter(department='技术部')
# print(queryset_res) # 输出: >, >, >]>
# 2、exclude(**kwargs)
# 2.1: 有参,参数为过滤条件
# 2.2: 返回值为QuerySet对象,QuerySet对象中包含了不符合过滤条件的多个记录对象
queryset_res=Employee.objects.exclude(department='技术部')
# 3、all()
# 3.1:无参
# 3.2:返回值为QuerySet对象,QuerySet对象中包含了查询出的所有记录对象
queryset_res = Employee.objects.all() # 查询出表中所有的记录对象
# 4、order_by(*field):
# 4.1:有参,参数为排序字段,可以指定多个字段,在字段1相同的情况下,可以按照字段2进行排序,以此类推,默认升序排列,在字段前加横杆代表降序排(如"-id")
# 4.2:返回值为QuerySet对象,QuerySet对象中包含了排序好的记录对象
queryset_res = Employee.objects.order_by("salary","-id") # 先按照salary字段升序排,如果salary相同则按照id字段降序排
# 5、values(*field)
# 5.1:有参,参数为字段名,可以指定多个字段
# 5.2:返回值为QuerySet对象,QuerySet对象中包含的并不是一个个的记录对象,而上多个字典,字典的key即我们传入的字段名
queryset_res = Employee.objects.values('id','name')
print(queryset_res) # 输出:
print(queryset_res[0]['name']) # 输出:Egon
# 6、values_list(*field):
# 6.1:有参,参数为字段名,可以指定多个字段
# 6.2:返回值为QuerySet对象,QuerySet对象中包含的并不是一个个的记录对象,而上多个小元组,字典的key即我们传入的字段名
queryset_res = Employee.objects.values_list('id','name')
print(queryset_res) # 输出:
print(queryset_res[0][1]) # 输出:Egon
Part3:
Part2中所示查询API的返回值都是QuerySet类型的对象,QuerySet类型是django ORM自定义的一种数据类型,专门用来存放查询出的多个记录对象,该类型的特殊之处在于
1、queryset类型类似于python中的列表,支持索引操作
# 过滤出符合条件的多个记录对象,然后存放到QuerySet对象中
queryset_res=Employee.objects.filter(department='技术部')
# 按照索引从QuerySet对象中取出第一个记录对象
obj=queryset_res[0]
print(obj.name,obj.birth,obj.salary)
2、管理器objects下的方法queryset下同样可以调用,并且django的ORM支持链式操作,于是我们可以像下面这样使用
# 简单示范:
res=Employee.objects.filter(gender=1).order_by('-id').values_list('id','name')
print(res) # 输出:
Part4:
其他查询API
# 1、reverse():
# 1.1:无参
# 1.2:对排序的结果取反,返回值为QuerySet对象
queryset_res = Employee.objects.order_by("salary", "-id").reverse()
# 2、exists():
# 2.1:无参
# 2.2:返回值为布尔值,如果QuerySet包含数据,就返回True,否则返回False
res = Employee.objects.filter(id=100).exists()
print(res) # 输出:False
# 3、distinct():
# 3.1:如果使用的是Mysql数据库,那么distinct()无需传入任何参数
# 3.2:从values或values_list的返回结果中剔除重复的记录对象,返回值为QuerySet对象
res = Employee.objects.filter(name='Egon').values('name', 'salary').distinct()
print(res) # 输出:
res1 = Employee.objects.filter(name='Egon').values_list('name', 'salary').distinct()
print(res1) # 输出:
2.2.2 基于双下划线的模糊查询
Django 还提供了一种直观而高效的方式在查询(lookups)中表示关联关系,它能自动确认 SQL JOIN 联系。要做跨关系查询,就使用两个下划线来链接模型(model)间关联字段的名称,直到最终链接到你想要的model 为止。
'''
正向查询按字段,反向查询按表名小写用来告诉ORM引擎join哪张表
'''
一对多查询
# 练习: 查询苹果出版社出版过的所有书籍的名字与价格(一对多)
# 正向查询 按字段:publish
queryResult=Book.objects
.filter(publish__name="苹果出版社")
.values_list("title","price")
# 反向查询 按表名:book
queryResult=Publish.objects
.filter(name="苹果出版社")
.values_list("book__title","book__price")
查询的本质一样,就是select from的表不一样
# 正向查询按字段,反向查询按表名小写
# 查询红楼梦这本书出版社的名字
# select * from app01_book inner join app01_publish
# on app01_book.publish_id=app01_publish.nid
ret=Book.objects.filter(name='红楼梦').values('publish__name')
print(ret)
ret=Publish.objects.filter(book__name='红楼梦').values('name')
print(ret)
多对多查询
# 练习: 查询alex出过的所有书籍的名字(多对多)
# 正向查询 按字段:authors:
queryResult=Book.objects
.filter(authors__name="yuan")
.values_list("title")
# 反向查询 按表名:book
queryResult=Author.objects
.filter(name="yuan")
.values_list("book__title","book__price")
# 正向查询按字段,反向查询按表名小写
# 查询红楼梦这本书出版社的名字
# select * from app01_book inner join app01_publish
# on app01_book.publish_id=app01_publish.nid
ret=Book.objects.filter(name='红楼梦').values('publish__name')
print(ret)
ret=Publish.objects.filter(book__name='红楼梦').values('name')
print(ret)
# sql 语句就是from的表不一样
# -------多对多正向查询
# 查询红楼梦所有的作者
ret=Book.objects.filter(name='红楼梦').values('authors__name')
print(ret)
# ---多对多反向查询
ret=Author.objects.filter(book__name='红楼梦').values('name')
ret=Author.objects.filter(book__name='红楼梦').values('name','author_detail__addr')
print(ret)
多对多关系其它常用API:
book_obj.authors.remove() # 将某个特定的对象从被关联对象集合中去除。 ====== book_obj.authors.remove(*[])
book_obj.authors.clear() #清空被关联对象集合
book_obj.authors.set() #先清空再设置
一对一查询
# 查询alex的手机号
# 正向查询
ret=Author.objects.filter(name="alex").values("authordetail__telephone")
# 反向查询
ret=AuthorDetail.objects.filter(author__name="alex").values("telephone")
# 查询lqz的手机号
# 正向查
ret=Author.objects.filter(name='lqz').values('author_detail__telephone')
print(ret)
# 反向查
ret= AuthorDatail.objects.filter(author__name='lqz').values('telephone')
print(ret)
进阶练习(连续跨表)
# 练习: 查询人民出版社出版过的所有书籍的名字以及作者的姓名
# 正向查询
queryResult=Book.objects
.filter(publish__name="人民出版社")
.values_list("title","authors__name")
# 反向查询
queryResult=Publish.objects
.filter(name="人民出版社")
.values_list("book__title","book__authors__age","book__authors__name")
# 练习: 手机号以151开头的作者出版过的所有书籍名称以及出版社名称
# 方式1:
queryResult=Book.objects
.filter(authors__authorDetail__telephone__regex="151")
.values_list("title","publish__name")
# 方式2:
ret=Author.objects
.filter(authordetail__telephone__startswith="151")
.values("book__title","book__publish__name")
# ----进阶练习,连续跨表
# 查询手机号以33开头的作者出版过的书籍名称以及书籍出版社名称
# author_datail author book publish
# 基于authorDatail表
ret=AuthorDatail.objects.filter(telephone__startswith='33').values('author__book__name','author__book__publish__name')
print(ret)
# 基于Author表
ret=Author.objects.filter(author_detail__telephone__startswith=33).values('book__name','book__publish__name')
print(ret)
# 基于Book表
ret=Book.objects.filter(authors__author_detail__telephone__startswith='33').values('name','publish__name')
print(ret)
# 基于Publish表
ret=Publish.objects.filter(book__authors__author_detail__telephone__startswith='33').values('book__name','name')
print(ret)
related_name
publish = ForeignKey(Blog, related_name='bookList')
# 练习: 查询人民出版社出版过的所有书籍的名字与价格(一对多)
# 反向查询 不再按表名:book,而是related_name:bookList
queryResult=Publish.objects
.filter(name="人民出版社")
.values_list("bookList__title","bookList__price")
反向查询时,如果定义了related_name ,则用related_name替换表名,例如:
2.2.3 F与Q查询
F查询
在上面所有的例子中,我们在进行条件过滤时,都只是用某个字段与某个具体的值做比较。如果我们要对两个字段的值做比较,那该怎么做呢?
Django 提供 F() 来做这样的比较。F() 的实例可以在查询中引用字段,来比较两个不同字段的值,如下
# 一张书籍表中包含字段:评论数commentNum、收藏数keepNum,要求查询:评论数大于收藏数的书籍
from django.db.models import F
Book.objects.filter(commnetNum__lt=F('keepNum'))
Django 支持 F() 对象之间以及 F() 对象和常数之间的加减乘除和取模的操作
# 查询评论数大于收藏数2倍的书籍
from django.db.models import F
Book.objects.filter(commnetNum__lt=F('keepNum')*2)
修改操作也可以使用F函数,比如将每一本书的价格提高30元:
Book.objects.all().update(price=F("price")+30)
Q查询
filter()
等方法中逗号分隔开的多个关键字参数都是逻辑与(AND) 的关系。 如果我们需要使用逻辑或(OR)来连接多个条件,就用到了Django的Q对象
可以将条件传给类Q来实例化出一个对象,Q的对象可以使用&
和|
操作符组合起来,&等同于and,|等同于or
from django.db.models import Q
Employee.objects.filter(Q(id__gt=5) | Q(name="Egon"))
# 等同于sql:select * from app01_employee where id < 5 or name = 'Egon';
Q
对象可以使用~
操作符取反,相当于NOT
from django.db.models import Q
Employee.objects.filter(~Q(id__gt=5) | Q(name="Egon"))
# 等同于sql:select * from app01_employee where not (id < 5) or name = 'Egon';
当我们的过滤条件中既有or又有and,则需要混用Q对象与关键字参数,但Q
对象必须位于所有关键字参数的前面
from django.db.models import Q
Employee.objects.filter(Q(id__gt=5) | Q(name="Egon"),salary__lt=100)
# 等同于sql:select * from app01_employee where (id < 5 or name = 'Egon') and salary < 100;
2.2。4 聚合查询
聚合查询aggregate()是把所有查询出的记录对象整体当做一个组,我们可以搭配聚合函数来对整体进行一个聚合操作
from django.db.models import Avg, Max, Sum, Min, Max, Count # 导入聚合函数
# 1. 调用objects下的aggregate()方法,会把表中所有记录对象整体当做一组进行聚合
res1=Employee.objects.aggregate(Avg("salary")) # select avg(salary) as salary__avg from app01_employee;
print(res1) # 输出:{'salary__avg': 70.73}
# 2、aggregate()会把QuerySet对象中包含的所有记录对象当成一组进行聚合
res2=Employee.objects.all().aggregate(Avg("salary")) # select avg(salary) as salary__avg from app01_employee;
print(res2) # 输出:{'salary__avg': 70.73}
res3=Employee.objects.filter(id__gt=3).aggregate(Avg("salary")) # select avg(salary) as salary__avg from app01_employee where id > 3;
print(res3) # 输出:{'salary__avg': 71.0}
aggregate()的返回值为字典类型,字典的key是由”聚合字段的名称___聚合函数的名称”合成的,例如
Avg("salary") 合成的名字为 'salary__avg'
若我们想定制字典的key名,我们可以指定关键参数,如下
res1=Employee.objects.all().aggregate(avg_sal=Avg('salary')) # select avg(salary) as avg_sal from app01_employee;
print(res1) # 输出:{'avg_sal': 70.73} # 关键字参数名就会被当做字典的key
如果我们想得到多个聚合结果,那就需要为aggregate传入多个参数
res1=Employee.objects.all().aggregate(nums=Count('id'),avg_sal=Avg('salary'),max_sal=Max('salary'))
# 相当于SQL:select count(id) as nums,avg(salary) as avg_sal,max(salary) as max_sal from app01_employee;
print(res1) # 输出:{'nums': 10, 'avg_sal': 70.73, 'max_sal': Decimal('200.3')}
2.2.2.5 分组查询
分组查询annotate()相当于sql语句中的group by,是在分组后,对每个组进行单独的聚合,需要强调的是,在进行单表查询时,annotate()必须搭配values()使用:values("分组字段").annotate(聚合函数),如下
# 表中记录
mysql> select * from app01_employee;
+----+-------+--------+------------+------------+--------+
| id | name | gender | birth | department | salary |
+----+-------+--------+------------+------------+--------+
| 1 | Egon | 0 | 1997-01-27 | 财务部 | 100.1 |
| 2 | Kevin | 1 | 1998-02-27 | 技术部 | 10.1 |
| 3 | Lili | 0 | 1990-02-27 | 运营部 | 20.1 |
| 4 | Tom | 1 | 1991-02-27 | 运营部 | 30.1 |
| 5 | Jack | 1 | 1992-02-27 | 技术部 | 11.2 |
| 6 | Robin | 1 | 1988-02-27 | 技术部 | 200.3 |
| 7 | Rose | 0 | 1989-02-27 | 财务部 | 35.1 |
+----+-------+--------+------------+------------+--------+
# 查询每个部门下的员工数
res=Employee.objects.values('department').annotate(num=Count('id'))
# 相当于sql:
# select department,count(id) as num from app01_employee group by department;
print(res)
# 输出:
跟在annotate前的values方法,是用来指定分组字段,即group by后的字段,而跟在annotate后的values方法,则是用来指定分组后要查询的字段,即select 后跟的字段
res=Employee.objects.values('department').annotate(num=Count('id')).values('num')
# 相当于sql:
# select count(id) as num from app01_employee group by department;
print(res)
# 输出:
跟在annotate前的filter方法表示where条件,跟在annotate后的filter方法表示having条件,如下
# 查询男员工数超过2人的部门名
res=Employee.objects.filter(gender=1).values('department').annotate(male_count=Count("id")).filter(male_count__gt=2).values('department')
print(res) # 输出:
# 解析:
# 1、跟在annotate前的filter(gender=1) 相当于 where gender = 1,先过滤出所有男员工信息
# 2、values('department').annotate(male_count=Count("id")) 相当于group by department,对过滤出的男员工按照部门分组,然后聚合出每个部门内的男员工数赋值给字段male_count
# 3、跟在annotate后的filter(male_count__gt=2) 相当于 having male_count > 2,会过滤出男员工数超过2人的部门
# 4、最后的values('department')代表从最终的结果中只取部门名
总结:
1、values()在annotate()前表示group by的字段,在后表示取值
1、filter()在annotate()前表示where条件,在后表示having
需要注意的是,如果我们在annotate前没有指定values(),那默认用表中的id字段作为分组依据,而id各不相同,如此分组是没有意义的,如下
res=Employee.objects.annotate(Count('name')) # 每条记录都是一个分组
res=Employee.objects.all().annotate(Count('name')) # 同上
2.3 修改记录
2.3.1 直接修改单条记录
可以修改记录对象属性的值,然后执行save方法从而完成对单条记录的直接修改
# 1、获取记录对象
obj=Employee.objects.filter(name='Egon')[0]
# 2、修改记录对象属性的值
obj.name='EGON'
obj.gender=1
# 3、重新保存
obj.save()
2.3.2 修改QuerySet中的所有记录对象
QuerySet对象下的update()方法可以更QuerySet中包含的所有对象,该方法会返回一个整型数值,表示受影响的记录条数(相当于sql语句执行结果的rows)
queryset_obj=Employee.objects.filter(id__gt=5)
rows=queryset_obj.update(name='EGON',gender=1)
2.4 删除记录
2.4.1 直接删除单条记录
可以直接调用记录对象下的delete方法,该方法运行时立即删除本条记录而不返回任何值,如下
obj=Employee.objects.first()
obj.delete()
2.4.2 删除QuerySet中的所有记录对象
每个 QuerySet下也都有一个 delete() 方法,它一次性删除 QuerySet 中所有的对象(如果QuerySet对象中只有一个记录对象,那也就只删一条),如下
queryset_obj=Employee.objects.filter(id__gt=5)
rows=queryset_obj.delete()
需要强调的是管理objects下并没有delete方法,这是一种保护机制,是为了避免意外地调用 Employee.objects.delete() 方法导致所有的记录被误删除从而跑路。但如果你确认要删除所有的记录,那么你必须显式地调用管理器下的all方法,拿到一个QuerySet对象后才能调用delete方法删除所有
Employee.objects.all().delete()