Stream 作为 Java 8 的一大亮点,它与 java.io 包里的 InputStream 和 OutputStream 是完全不同的概念。它也不同于 StAX 对 XML 解析的 Stream,也不是 Amazon Kinesis 对大数据实时处理的 Stream。Java 8 中的 Stream 是对集合(Collection)对象功能的增强,它专注于对集合对象进行各种非常便利、高效的聚合操作(aggregate operation),或者大批量数据操作 (bulk data operation)。Stream API 借助于同样新出现的 Lambda 表达式,极大的提高编程效率和程序可读性。同时它提供串行和并行两种模式进行汇聚操作,并发模式能够充分利用多核处理器的优势,使用 fork/join 并行方式来拆分任务和加速处理过程。通常编写并行代码很难而且容易出错, 但使用 Stream API 无需编写一行多线程的代码,就可以很方便地写出高性能的并发程序。所以说,Java 8 中首次出现的 java.util.stream 是一个函数式语言+多核时代综合影响的产物。
我们平常使用数据库函数,入 sum,count,max,min,group by,order by等。常常是需要依赖数据库的,但是现如今数据源已经多样化了(这点感觉比较深,目前我使用的项目用到了DB,DUBBO,ES,HTTP),有时候需要DB进行数据的更上层统计,Java8之前,辅助型统计函数很少,如下:
客户每月平均消费金额
最昂贵的在售商品
本周完成的有效订单(排除了无效的)
取十个数据样本作为首页推荐
Pre JAVA8:
List groceryTransactions = new Arraylist<>();
for(Transaction t: transactions){
if(t.getType() == Transaction.GROCERY){
GroceryTransactions.add(t);
}
}
Collections.sort(groceryTransactions, new Comparator(){
public int compare(Transaction t1, Transaction t2){
return t2.getValue().compareTo(t1.getValue());
}
});
List transactionIds = new ArrayList<>();
for(Transaction t: groceryTransactions){
transactionsIds.add(t.getId());
}
而在 Java 8 使用 Stream,代码更加简洁易读;而且使用并发模式,程序执行速度更快。
List<Integer> transactionsIds = transactions.parallelStream().
filter(t -> t.getType() == Transaction.GROCERY).
sorted(comparing(Transaction::getValue).reversed()).
map(Transaction::getId).
collect(toList());
Stream 不是集合元素,它不是数据结构并不保存数据,它是有关算法和计算的,它更像一个高级版本的 Iterator。原始版本的 Iterator,用户只能显式地一个一个遍历元素并对其执行某些操作;高级版本的 Stream,用户只要给出需要对其包含的元素执行什么操作,比如 “过滤掉长度大于 10 的字符串”、“获取每个字符串的首字母”等,Stream 会隐式地在内部进行遍历,做出相应的数据转换。
Stream 就如同一个迭代器(Iterator),单向,不可往复,数据只能遍历一次,遍历过一次后即用尽了,就好比流水从面前流过,一去不复返。
而和迭代器又不同的是,Stream 可以并行化操作,迭代器只能命令式地、串行化操作。顾名思义,当使用串行方式去遍历时,每个 item 读完后再读下一个 item。而使用并行去遍历时,数据会被分成多个段,其中每一个都在不同的线程中处理,然后将结果一起输出。
Stream 的并行操作依赖于 Java7 中引入的 Fork/Join 框架(JSR166y)来拆分任务和加速处理过程。Java 的并行 API 演变历程基本如下:
1.0-1.4 中的 java.lang.Thread
5.0 中的 java.util.concurrent
6.0 中的 Phasers 等
7.0 中的 Fork/Join 框架
8.0 中的 Lambda
Stream 的另外一大特点是,数据源本身可以是无限的。
有多种方式生成 Stream Source:
从 Collection 和数组
Collection.stream()
Collection.parallelStream()
Arrays.stream(T array) or Stream.of()
从 BufferedReader
java.io.BufferedReader.lines()
静态工厂
java.util.stream.IntStream.range()
java.nio.file.Files.walk()
自己构建
java.util.Spliterator
其它
Random.ints()
BitSet.stream()
Pattern.splitAsStream(java.lang.CharSequence)
JarFile.stream()
Intermediate:一个流可以后面跟随零个或多个 intermediate 操作。其目的主要是打开流,做出某种程度的数据映射/过滤,然后返回一个新的流,交给下一个操作使用。这类操作都是惰性化的(lazy),就是说,仅仅调用到这类方法,并没有真正开始流的遍历。
Terminal:一个流只能有一个 terminal 操作,当这个操作执行后,流就被使用“光”了,无法再被操作。所以这必定是流的最后一个操作。Terminal 操作的执行,才会真正开始流的遍历,并且会生成一个结果,或者一个 side effect。
在对于一个 Stream 进行多次转换操作 (Intermediate 操作),每次都对 Stream 的每个元素进行转换,而且是执行多次,这样时间复杂度就是 N(转换次数)个 for 循环里把所有操作都做掉的总和吗?其实不是这样的,转换操作都是 lazy 的,多个转换操作只会在 Terminal 操作的时候融合起来,一次循环完成。我们可以这样简单的理解,Stream 里有个操作函数的集合,每次转换操作就是把转换函数放入这个集合中,在 Terminal 操作的时候循环 Stream 对应的集合,然后对每个元素执行所有的函数。
还有一种操作被称为 short-circuiting。用以指:
对于一个intermediate操作,如果它接受的是一个无限大(infinite/unbounded)的Stream,但返回一个有限的新 Stream。
对于一个 terminal 操作,如果它接受的是一个无限大的 Stream,但能在有限的时间计算出结果。
当操作一个无限大的 Stream,而又希望在有限时间内完成操作,则在管道内拥有一个 short-circuiting 操作是必要非充分条件。
清单 3. 一个流操作的示例
int sum = widgets.stream()
.filter(w -> w.getColor() == RED)
.mapToInt(w -> w.getWeight())
.sum();
stream() 获取当前小物件的 source,filter 和 mapToInt 为 intermediate 操作,进行数据筛选和转换,最后一个 sum() 为 terminal 操作,对符合条件的全部小物件作重量求和。
后面还有两篇,主要是讲流操作的,这篇理论知识比较多是借鉴的,后面的操作是自己函数的应用锻炼;
参考博客:Java 8 中的 Streams API 详解