《一日二十四挨踢www.1024it.net》站文章在未特殊说明下默认为原创性文章。
在未有正式书面授权情况下,请勿转载。谢谢配合
/******************************************************************************
* Copyright (c) 2011 IBM Corporation
* All rights reserved.
* This program and the accompanying materials
* are made available under the terms of the BSD License
* which accompanies this distribution, and is available at
* http://www.opensource.org/licenses/bsd-license.php
*
* Contributors:
* IBM Corporation - initial implementation
*****************************************************************************/
/*
* Common byteorder (endianess) macros
*/
#ifndef BYTEORDER_H
#define BYTEORDER_H
static inline uint16_t
bswap_16 (uint16_t x)
{
return ((x&0xff00) >> 8) | ((x&0xff) << 8);
}
static inline uint32_t
bswap_32 (uint32_t x)
{
return bswap_16(x >> 16) | (bswap_16(x) << 16);
}
static inline uint64_t
bswap_64 (uint64_t x)
{
return (uint64_t) bswap_32(x >> 32) | (uint64_t) bswap_32(x) << 32;
}
/* gcc defines __BIG_ENDIAN__ on big endian targets */
#ifdef __BIG_ENDIAN__
#define cpu_to_be16(x) (x)
#define cpu_to_be32(x) (x)
#define cpu_to_be64(x) (x)
#define be16_to_cpu(x) (x)
#define be32_to_cpu(x) (x)
#define be64_to_cpu(x) (x)
#define le16_to_cpu(x) bswap_16(x)
#define le32_to_cpu(x) bswap_32(x)
#define le64_to_cpu(x) bswap_64(x)
#define cpu_to_le16(x) bswap_16(x)
#define cpu_to_le32(x) bswap_32(x)
#define cpu_to_le64(x) bswap_64(x)
#else
#define cpu_to_be16(x) bswap_16(x)
#define cpu_to_be32(x) bswap_32(x)
#define cpu_to_be64(x) bswap_64(x)
#define be16_to_cpu(x) bswap_16(x)
#define be32_to_cpu(x) bswap_32(x)
#define be64_to_cpu(x) bswap_64(x)
#define le16_to_cpu(x) (x)
#define le32_to_cpu(x) (x)
#define le64_to_cpu(x) (x)
#define cpu_to_le16(x) (x)
#define cpu_to_le32(x) (x)
#define cpu_to_le64(x) (x)
#endif /* __BIG_ENDIAN__ */
#endif /* BYTEORDER_H */
上面的code存在于./roms/SLOF/include/byteorder.h中,用来控制字节顺序。
下面的三个函数,通过移位用算实现了16、32、64位整数的高低两部分的转换。(这里有个疑问,大小端是按照字节来布局的,还是按照整型数位数的一半????)
static inline uint16_t
bswap_16 (uint16_t x)
{
return ((x&0xff00) >> 8) | ((x&0xff) << 8);
}
static inline uint32_t
bswap_32 (uint32_t x)
{
return bswap_16(x >> 16) | (bswap_16(x) << 16);
}
static inline uint64_t
bswap_64 (uint64_t x)
{
return (uint64_t) bswap_32(x >> 32) | (uint64_t) bswap_32(x) << 32;
}
通过宏#ifdef __BIG_ENDIAN__来选择大端和小端。
********************************************************************************************************************************************************************
********************************************************************************************************************************************************************
前面提到了./roms/SLOF/include/byteorder.h里的字节序列,也提出了疑问。下面加入./include/qemu/bswap.h处关于大小端的定义(注意宏定义的if 和 else):#ifndef BSWAP_H
#define BSWAP_H
#include "config-host.h"
#include
#include
#include "fpu/softfloat.h"
#ifdef CONFIG_MACHINE_BSWAP_H
# include
# include
# include
#elif defined(CONFIG_BYTESWAP_H)
# include
static inline uint16_t bswap16(uint16_t x)
{
return bswap_16(x);
}
static inline uint32_t bswap32(uint32_t x)
{
return bswap_32(x);
}
static inline uint64_t bswap64(uint64_t x)
{
return bswap_64(x);
}
# else
static inline uint16_t bswap16(uint16_t x)
{
return (((x & 0x00ff) << 8) |
((x & 0xff00) >> 8));
}
static inline uint32_t bswap32(uint32_t x)
{
return (((x & 0x000000ffU) << 24) |
((x & 0x0000ff00U) << 8) |
((x & 0x00ff0000U) >> 8) |
((x & 0xff000000U) >> 24));
}
static inline uint64_t bswap64(uint64_t x)
{
return (((x & 0x00000000000000ffULL) << 56) |
((x & 0x000000000000ff00ULL) << 40) |
((x & 0x0000000000ff0000ULL) << 24) |
((x & 0x00000000ff000000ULL) << 8) |
((x & 0x000000ff00000000ULL) >> 8) |
((x & 0x0000ff0000000000ULL) >> 24) |
((x & 0x00ff000000000000ULL) >> 40) |
((x & 0xff00000000000000ULL) >> 56));
}
#endif /* ! CONFIG_MACHINE_BSWAP_H */
static inline void bswap16s(uint16_t *s)
{
*s = bswap16(*s);
}
static inline void bswap32s(uint32_t *s)
{
*s = bswap32(*s);
}
static inline void bswap64s(uint64_t *s)
{
*s = bswap64(*s);
}
#if defined(HOST_WORDS_BIGENDIAN)
#define be_bswap(v, size) (v)
#define le_bswap(v, size) glue(bswap, size)(v)
#define be_bswaps(v, size)
#define le_bswaps(p, size) do { *p = glue(bswap, size)(*p); } while(0)
#else
#define le_bswap(v, size) (v)
#define be_bswap(v, size) glue(bswap, size)(v)
#define le_bswaps(v, size)
#define be_bswaps(p, size) do { *p = glue(bswap, size)(*p); } while(0)
#endif
#define CPU_CONVERT(endian, size, type)\
static inline type endian ## size ## _to_cpu(type v)\
{\
return glue(endian, _bswap)(v, size);\
}\
\
static inline type cpu_to_ ## endian ## size(type v)\
{\
return glue(endian, _bswap)(v, size);\
}\
\
static inline void endian ## size ## _to_cpus(type *p)\
{\
glue(endian, _bswaps)(p, size);\
}\
\
static inline void cpu_to_ ## endian ## size ## s(type *p)\
{\
glue(endian, _bswaps)(p, size);\
}\
\
static inline type endian ## size ## _to_cpup(const type *p)\
{\
return glue(glue(endian, size), _to_cpu)(*p);\
}\
\
static inline void cpu_to_ ## endian ## size ## w(type *p, type v)\
{\
*p = glue(glue(cpu_to_, endian), size)(v);\
}
CPU_CONVERT(be, 16, uint16_t)
CPU_CONVERT(be, 32, uint32_t)
CPU_CONVERT(be, 64, uint64_t)
CPU_CONVERT(le, 16, uint16_t)
CPU_CONVERT(le, 32, uint32_t)
CPU_CONVERT(le, 64, uint64_t)
/* len must be one of 1, 2, 4 */
static inline uint32_t qemu_bswap_len(uint32_t value, int len)
{
return bswap32(value) >> (32 - 8 * len);
}
/* Unions for reinterpreting between floats and integers. */
typedef union {
float32 f;
uint32_t l;
} CPU_FloatU;
typedef union {
float64 d;
#if defined(HOST_WORDS_BIGENDIAN)
struct {
uint32_t upper;
uint32_t lower;
} l;
#else
struct {
uint32_t lower;
uint32_t upper;
} l;
#endif
uint64_t ll;
} CPU_DoubleU;
typedef union {
floatx80 d;
struct {
uint64_t lower;
uint16_t upper;
} l;
} CPU_LDoubleU;
typedef union {
float128 q;
#if defined(HOST_WORDS_BIGENDIAN)
struct {
uint32_t upmost;
uint32_t upper;
uint32_t lower;
uint32_t lowest;
} l;
struct {
uint64_t upper;
uint64_t lower;
} ll;
#else
struct {
uint32_t lowest;
uint32_t lower;
uint32_t upper;
uint32_t upmost;
} l;
struct {
uint64_t lower;
uint64_t upper;
} ll;
#endif
} CPU_QuadU;
/* unaligned/endian-independent pointer access */
/*
* the generic syntax is:
*
* load: ld{type}{sign}{size}{endian}_p(ptr)
*
* store: st{type}{size}{endian}_p(ptr, val)
*
* Note there are small differences with the softmmu access API!
*
* type is:
* (empty): integer access
* f : float access
*
* sign is:
* (empty): for floats or 32 bit size
* u : unsigned
* s : signed
*
* size is:
* b: 8 bits
* w: 16 bits
* l: 32 bits
* q: 64 bits
*
* endian is:
* (empty): host endian
* be : big endian
* le : little endian
*/
static inline int ldub_p(const void *ptr)
{
return *(uint8_t *)ptr;
}
static inline int ldsb_p(const void *ptr)
{
return *(int8_t *)ptr;
}
static inline void stb_p(void *ptr, int v)
{
*(uint8_t *)ptr = v;
}
/* Any compiler worth its salt will turn these memcpy into native unaligned
operations. Thus we don't need to play games with packed attributes, or
inline byte-by-byte stores. */
static inline int lduw_p(const void *ptr)
{
uint16_t r;
memcpy(&r, ptr, sizeof(r));
return r;
}
static inline int ldsw_p(const void *ptr)
{
int16_t r;
memcpy(&r, ptr, sizeof(r));
return r;
}
static inline void stw_p(void *ptr, uint16_t v)
{
memcpy(ptr, &v, sizeof(v));
}
static inline int ldl_p(const void *ptr)
{
int32_t r;
memcpy(&r, ptr, sizeof(r));
return r;
}
static inline void stl_p(void *ptr, uint32_t v)
{
memcpy(ptr, &v, sizeof(v));
}
static inline uint64_t ldq_p(const void *ptr)
{
uint64_t r;
memcpy(&r, ptr, sizeof(r));
return r;
}
static inline void stq_p(void *ptr, uint64_t v)
{
memcpy(ptr, &v, sizeof(v));
}
static inline int lduw_le_p(const void *ptr)
{
return (uint16_t)le_bswap(lduw_p(ptr), 16);
}
static inline int ldsw_le_p(const void *ptr)
{
return (int16_t)le_bswap(lduw_p(ptr), 16);
}
static inline int ldl_le_p(const void *ptr)
{
return le_bswap(ldl_p(ptr), 32);
}
static inline uint64_t ldq_le_p(const void *ptr)
{
return le_bswap(ldq_p(ptr), 64);
}
static inline void stw_le_p(void *ptr, int v)
{
stw_p(ptr, le_bswap(v, 16));
}
static inline void stl_le_p(void *ptr, int v)
{
stl_p(ptr, le_bswap(v, 32));
}
static inline void stq_le_p(void *ptr, uint64_t v)
{
stq_p(ptr, le_bswap(v, 64));
}
/* float access */
static inline float32 ldfl_le_p(const void *ptr)
{
CPU_FloatU u;
u.l = ldl_le_p(ptr);
return u.f;
}
static inline void stfl_le_p(void *ptr, float32 v)
{
CPU_FloatU u;
u.f = v;
stl_le_p(ptr, u.l);
}
static inline float64 ldfq_le_p(const void *ptr)
{
CPU_DoubleU u;
u.ll = ldq_le_p(ptr);
return u.d;
}
static inline void stfq_le_p(void *ptr, float64 v)
{
CPU_DoubleU u;
u.d = v;
stq_le_p(ptr, u.ll);
}
static inline int lduw_be_p(const void *ptr)
{
return (uint16_t)be_bswap(lduw_p(ptr), 16);
}
static inline int ldsw_be_p(const void *ptr)
{
return (int16_t)be_bswap(lduw_p(ptr), 16);
}
static inline int ldl_be_p(const void *ptr)
{
return be_bswap(ldl_p(ptr), 32);
}
static inline uint64_t ldq_be_p(const void *ptr)
{
return be_bswap(ldq_p(ptr), 64);
}
static inline void stw_be_p(void *ptr, int v)
{
stw_p(ptr, be_bswap(v, 16));
}
static inline void stl_be_p(void *ptr, int v)
{
stl_p(ptr, be_bswap(v, 32));
}
static inline void stq_be_p(void *ptr, uint64_t v)
{
stq_p(ptr, be_bswap(v, 64));
}
/* float access */
static inline float32 ldfl_be_p(const void *ptr)
{
CPU_FloatU u;
u.l = ldl_be_p(ptr);
return u.f;
}
static inline void stfl_be_p(void *ptr, float32 v)
{
CPU_FloatU u;
u.f = v;
stl_be_p(ptr, u.l);
}
static inline float64 ldfq_be_p(const void *ptr)
{
CPU_DoubleU u;
u.ll = ldq_be_p(ptr);
return u.d;
}
static inline void stfq_be_p(void *ptr, float64 v)
{
CPU_DoubleU u;
u.d = v;
stq_be_p(ptr, u.ll);
}
/* Legacy unaligned versions. Note that we never had a complete set. */
static inline void cpu_to_le16wu(uint16_t *p, uint16_t v)
{
stw_le_p(p, v);
}
static inline void cpu_to_le32wu(uint32_t *p, uint32_t v)
{
stl_le_p(p, v);
}
static inline uint16_t le16_to_cpupu(const uint16_t *p)
{
return lduw_le_p(p);
}
static inline uint32_t le32_to_cpupu(const uint32_t *p)
{
return ldl_le_p(p);
}
static inline uint32_t be32_to_cpupu(const uint32_t *p)
{
return ldl_be_p(p);
}
static inline void cpu_to_be16wu(uint16_t *p, uint16_t v)
{
stw_be_p(p, v);
}
static inline void cpu_to_be32wu(uint32_t *p, uint32_t v)
{
stl_be_p(p, v);
}
static inline void cpu_to_be64wu(uint64_t *p, uint64_t v)
{
stq_be_p(p, v);
}
static inline void cpu_to_32wu(uint32_t *p, uint32_t v)
{
stl_p(p, v);
}
static inline unsigned long leul_to_cpu(unsigned long v)
{
/* In order to break an include loop between here and
qemu-common.h, don't rely on HOST_LONG_BITS. */
#if ULONG_MAX == UINT32_MAX
return le_bswap(v, 32);
#elif ULONG_MAX == UINT64_MAX
return le_bswap(v, 64);
#else
# error Unknown sizeof long
#endif
}
#undef le_bswap
#undef be_bswap
#undef le_bswaps
#undef be_bswaps
#endif /* BSWAP_H */