java高并发详解

转载地址:https://www.cnblogs.com/lr393993507/p/5909804.html

    对于开发的网站,如果网站的访问量非常大,那么我们应该考虑相关的、并发访问问题,并发是绝大部分程序员头疼的问题;

为了更好的理解并发和同步,先明白两个重要的概念:异步和同步;

 1、同步和异步的区别和联系

所谓同步就是执行完一个函数后方法后,一直等待系统返回值或消息,这是程序是阻塞的,只有接受到返回值或者消息才会往下执行其他命令

异步,执行完函数或方法后,不必阻塞的等待系统返回值或消息,只需向系统委托一个异步过程,那么当系统接受到返回值或者消息,系统会

自动触发异步过程,完成一个完整的流程

同步在一定程度上可以看成单线程,线程请求一个方法后就等待这个方法给回复,否则不会继续执行下去(死心眼);

异步在一定程度上可以看成多线程,请求一个方法后就不管了,继续执行其他的方法

同步就是事情一件一件的做,异步就是做一件事,不影响做其他事情。

例:吃饭和说话是同步的,只能一件一件的做,因为只有一张嘴

吃饭和听音乐是异步的,吃饭和听音乐互不影响

      

     对于java程序员,我们经常会听到同步关键字synchronized,假如这个同步的监视对象是类,那么如果一个对象访问类里面的同步方法是,另一个对象

也访问这个类里面的同步方法,这是就会进入阻塞状态,只有等前一个对象执行完同步方法后,后一个对象才能继续执行该方法,这就是同步。相反,

如果没有被同步关键字synchronize修饰,两个对象可以在同一时间访问同一方法,这就是异步。

    脏数据

脏读就是指当一个事物正在访问数据,并且对数据做了修改,但是数据修改并未提交到数据库,而另一个事物也在访问这个数据,然后使用数据,因为

这个数据是还没提交的数据,所以另一个事务读取的数据就是脏数据(dirty data),依据脏数据做的操作是不正确的

不可重复读

不可重复读是指一个事务内多次读取同一个数据,在这个事务还没有结束的时候,另一个事务也访问同一数据并做了修改,这时第一个事务中两次读取的

数据可能是不一样的,这样就发生在 一个事务内读取的数据不一样,因此成为不可重复读


二、如何处理并发和同步

处理并发和同步问题主要是通过锁机制,锁机制主要有两个层面

一种是代码层次的,如java的同步锁,典型的就是同步关键字synchronize,这里不做过多的讲解:

感兴趣的可以参考:http://www.cnblogs.com/xiohao/p/4151408.html

另一种是数据库层次的,比较典型的是悲观锁和乐观锁,这里重点讲解的就是悲观锁(传统的物理锁)和乐观锁

悲观锁(Prssimistic Locking)

悲观锁:正如其名,它是指对数据被外界(包括本系统当前的其他事务和外部系统的事务处理)修改保持保守态度,因此在数据处理过程中,

将数据处于锁定状态

悲观锁的实现机制,往往依靠数据库提供的锁机制(也只有数据库层的锁机制才能真正保持数据访问的排他性,否则即使在本系统中实现了加锁机制,也无法

保证外部系统不会修改数据)

一个典型的依赖数据库的悲观锁调用:

select * form account where  name=‘admin’  for  update

这条sql语句锁定account表中所有符合条件查询的记录,在事物提交前(事务提交时会释放是事务过程中的锁),外界无法修改这些记录

hibernate的悲观锁也是基于数据库的锁机制实现的

下列代码实现了hibernate的悲观锁

String hql=”from User where  user.name=”admin”;

Query query=session.createQuery(hql);

query.setLock(‘user”,LockMode.UPGRADE);//加锁

List queryList=query.list()

query.setLock对查询语句中,特定别名所对应的记录进行加锁,对返回的user记录进行加锁

观察运行期 Hibernate 生成的 SQL 语句: 
      select tuser0_.id as id, tuser0_.name as name, tuser0_.group_id
      as group_id, tuser0_.user_type as user_type, tuser0_.sex as sex
      from t_user tuser0_ where (tuser0_.name=’Erica’ ) for update
     这里 Hibernate 通过使用数据库的 for update 子句实现了悲观锁机制。 
      Hibernate 的加锁模式有: 
      Ø LockMode.NONE : 无锁机制。 
      Ø LockMode.WRITE : Hibernate 在 Insert 和 Update 记录的时候会自动获取
      Ø LockMode.READ : Hibernate 在读取记录的时候会自动获取。 
      以上这三种锁机制一般由 Hibernate 内部使用,如 Hibernate 为了保证 Update
      过程中对象不会被外界修改,会在 save 方法实现中自动为目标对象加上 WRITE 锁。 
      Ø LockMode.UPGRADE :利用数据库的 for update 子句加锁。 
      Ø LockMode. UPGRADE_NOWAIT : Oracle 的特定实现,利用 Oracle 的 for
      update nowait 子句实现加锁。 
      上面这两种锁机制是我们在应用层较为常用的,加锁一般通过以下方法实现: 
      Criteria.setLockMode
      Query.setLockMode
      Session.lock

注意:只有在查询开始之前(hibernate生成sql之前)加锁 ,才会真正通过数据库的锁机制进行加锁,否则数据已经通过不包含for uodate 

的sql加载进来,此时无法进行加锁

  为了更好的理解select… for update的锁表的过程,本人将要以mysql为例,进行相应的讲解

      1、要测试锁定的状况,可以利用MySQL的Command Mode ,开二个视窗来做测试。

          表的基本结构如下:

          java高并发详解_第1张图片

 

           表中内容如下:

           java高并发详解_第2张图片

 

          开启两个测试窗口,在其中一个窗口执行select * from ta for update0

          然后在另外一个窗口执行update操作如下图:

          java高并发详解_第3张图片

          等到一个窗口commit后的图片如下:

          java高并发详解_第4张图片

           到这里,悲观锁机制你应该了解一些了吧~

注意:for  update 要放在mysql的事物中,即begin和end之间,否则不起作用

   至于是锁住整个表还是锁住选中的行,请参考:

           http://www.cnblogs.com/xiohao/p/4385768.html

            至于hibernate中的悲观锁使用起来比较简单,这里就不写demo了~感兴趣的自己查一下就ok了~


乐观锁

相对于悲观锁,乐观锁采取更加宽松的加锁机制。悲观锁主要是通过数据库的加锁机制实现,保证操作最大程度的独占性,

但随之而来的是数据库性能的大量开销,对于长事务而言,这样的开销是无法承受的。如一个金融系统,当某个操作员读取用户

的数据,并在读出的用户数据的基础上进 行修改时(如更改用户帐户余额),如果采用悲观锁机制,也就意味着整个操作过 中

(从操作员读出数据、开始修改直至提交修改结果的全过程,甚至还包括操作 员中途去煮咖啡的时间),数据库记录始终处于

加锁状态,可以想见,如果面对几 百上千个并发,这样的情况将导致怎样的后果。 乐观锁机制在一定程度上解决了这个问题。

乐观锁大多是同过数据库版本(version)记录机制实现的,即为数据增加一个版本标识,在基于数据库表的解决方案中,一般是

在表中增加一个version字段来实现,读取数据时将版本号一起读取,在更新操作时将版本号加1,将提交的数据的版本号和数据库中

的数据版本号进行比较,若大于数据库中数据的版本号,则提交更新数据,否则认为是过期数据,无法提交,抛出异常。


对于上面修改用户帐户信息的例子而言,假设数据库中帐户信息表中有一个 version 字段,当前值为 1 ;而当前帐户余额字段( balance )

100Aversion=1 100 。 操 作 员 A 此 时 将 其 读 出 ( v e r s i o n = 1 ) , 并 从 其 帐 户 余 额 中 扣 除 50( 100 100 − 50 )。 2 在操作员 A 操作的过程中,操作员B

也读入此用户信息( version=1 ),并 从其帐户余额中扣除 20 20 ( 100-$20 )。 3 操作员 A 完成了修改工作,将数据版本号加一(

version=2 ),连同帐户扣 除后余额( balance=$50 ),提交至数据库更新,此时由于提交数据版本大 于数据库记录当前版本,数据被

更新,数据库记录 version 更新为 2 。 4 操作员 B 完成了操作,也将版本号加一( version=2 )试图向数据库提交数 据( balance=$80 ),

但此时比对数据库记录版本时发现,操作员 B 提交的 数据版本号为 2 ,数据库记录当前版本也为 2 ,不满足 “ 提交版本必须大于记 录

当前版本才能执行更新 “ 的乐观锁策略,因此,操作员 B 的提交被驳回。 这样,就避免了操作员 B 用基于version=1 的旧数据修改的

结果覆盖操作 员 A 的操作结果的可能。 从上面的例子可以看出,乐观锁机制避免了长事务中的数据库加锁开销(操作员 A和操作员 B 操

作过程中,都没有对数据库数据加锁),大大提升了大并发量下的系 统整体性能表现。

需要注意的是乐观锁是基于数据存储的逻辑,因此具备一定的局限性,如在上例中,由于乐观锁是在我们的系统内实现的,来自外部系统的

用户余额更新操作不受系统的限制,因此可能会造成脏数据更新到数据库中。在系统设计时,我们应该充分考虑这些情况,并作出相应的调整,如将

乐观锁放在数据库的存储过程中,对外开放基于此存储过程的更新途径,而不是直接将数据库表对外公开。 hibernate中数据访问引擎中实现

了乐观锁,如果不考虑外部系统的数据库的操作,可以考察通过hibernate提供的透明乐观锁实现,将大大提升生产力

User.hbm.xml




        “-//Hibernate/Hibernate Mapping DTD 3.0//EN”
        “http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd”>
 

 
   
             
           
       

       
       
       
       
                 
   

     
 

注意:version节点必须出现在id节点后

这里我们声明了一个 version 属性,用于存放用户的版本信息,保存在 User 表的version中 
optimistic-lock 属性有如下可选取值: 
Ø none
无乐观锁 
Ø version
通过版本机制实现乐观锁 
Ø dirty
通过检查发生变动过的属性实现乐观锁 
Ø all
通过检查所有属性实现乐观锁 
其中通过 version 实现的乐观锁机制是 Hibernate 官方推荐的乐观锁实现,同时也 
是 Hibernate 中,目前唯一在数据对象脱离 Session 发生修改的情况下依然有效的锁机 
制。因此,一般情况下,我们都选择 version 方式作为 Hibernate 乐观锁实现机制。

2 . 配置文件hibernate.cfg.xml和UserTest测试类


   hibernate.cfg.xml



        “-//Hibernate/Hibernate Configuration DTD 3.0//EN”
        “http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd”>
 


 
   
    org.hibernate.dialect.MySQL5InnoDBDialect
   
    update
   
    true
   
    false
    thread
 
 
   
    jdbc:mysql:///user
    root
    123456
    com.mysql.jdbc.Driver
   
 
 
 



UserTest.java



package com.xiaohao.test;
 
import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.Transaction;
import org.hibernate.cfg.Configuration;
 
public class UserTest {
    public static void main(String[] args) {
        Configuration conf=new Configuration().configure();
        SessionFactory sf=conf.buildSessionFactory();
        Session session=sf.getCurrentSession();
        Transaction tx=session.beginTransaction();
//      User user=new User(“小浩”,”英雄”);
//      session.save(user);
//       session.createSQLQuery(“insert into user(userName,password) value(‘张英雄16’,’123’)”)
//                  .executeUpdate();
        User user=(User) session.get(User.class, 1);
        user.setUserName(“221”);
//      session.save(user);
     
        System.out.println(“恭喜您,用户的数据插入成功了哦~~”);
        tx.commit();
    }
 
}

每次对 TUser 进行更新的时候,我们可以发现,数据库中的 version 都在递增。


 


下面我们将要通过乐观锁来实现一下并发和同步的测试用例:


这里需要使用两个测试类,分别运行在不同的虚拟机上面,以此来模拟多个用户同时操作一张表,同时其中一个测试类需要模拟长事务


UserTest.java



package com.xiaohao.test;
 
import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.Transaction;
import org.hibernate.cfg.Configuration;
 
public class UserTest {
    public static void main(String[] args) {
        Configuration conf=new Configuration().configure();
        SessionFactory sf=conf.buildSessionFactory();
        Session session=sf.openSession();
//      Session session2=sf.openSession();
        User user=(User) session.createQuery(” from User user where user=5”).uniqueResult();
//      User user2=(User) session.createQuery(” from User user where user=5”).uniqueResult();
        System.out.println(user.getVersion());
//      System.out.println(user2.getVersion());
        Transaction tx=session.beginTransaction();
        user.setUserName(“101”);
        tx.commit();
         
        System.out.println(user.getVersion());
//      System.out.println(user2.getVersion());
//      System.out.println(user.getVersion()==user2.getVersion());
//      Transaction tx2=session2.beginTransaction();
//      user2.setUserName(“4468”);
//      tx2.commit();
     
    }
 
}

 


UserTest2.java



package com.xiaohao.test;
 
import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.Transaction;
import org.hibernate.cfg.Configuration;
 
public class UserTest2 {
    public static void main(String[] args) throws InterruptedException {
        Configuration conf=new Configuration().configure();
        SessionFactory sf=conf.buildSessionFactory();
        Session session=sf.openSession();
//      Session session2=sf.openSession();
        User user=(User) session.createQuery(” from User user where user=5”).uniqueResult();
        Thread.sleep(10000);
//      User user2=(User) session.createQuery(” from User user where user=5”).uniqueResult();
        System.out.println(user.getVersion());
//      System.out.println(user2.getVersion());
        Transaction tx=session.beginTransaction();
        user.setUserName(“100”);
        tx.commit();
         
        System.out.println(user.getVersion());
//      System.out.println(user2.getVersion());
//      System.out.println(user.getVersion()==user2.getVersion());
//      Transaction tx2=session2.beginTransaction();
//      user2.setUserName(“4468”);
//      tx2.commit();
     
    }
 
}

 


操作流程及简单讲解: 首先启动UserTest2.java测试类,在执行到Thread.sleep(10000);这条语句的时候,当前线程会进入睡眠状态。在10秒钟之内
  启动UserTest这个类,在到达10秒的时候,我们将会在UserTest.java中抛出下面的异常:


Exception in thread “main” org.hibernate.StaleObjectStateException: Row was updated or deleted by another transaction (or unsaved-value mapping was incorrect): [com.xiaohao.test.User#5]
    at org.hibernate.persister.entity.AbstractEntityPersister.check(AbstractEntityPersister.java:1932)
    at org.hibernate.persister.entity.AbstractEntityPersister.update(AbstractEntityPersister.java:2576)
    at org.hibernate.persister.entity.AbstractEntityPersister.updateOrInsert(AbstractEntityPersister.java:2476)
    at org.hibernate.persister.entity.AbstractEntityPersister.update(AbstractEntityPersister.java:2803)
    at org.hibernate.action.EntityUpdateAction.execute(EntityUpdateAction.java:113)
    at org.hibernate.engine.ActionQueue.execute(ActionQueue.java:273)
    at org.hibernate.engine.ActionQueue.executeActions(ActionQueue.java:265)
    at org.hibernate.engine.ActionQueue.executeActions(ActionQueue.java:185)
    at org.hibernate.event.def.AbstractFlushingEventListener.performExecutions(AbstractFlushingEventListener.java:321)
    at org.hibernate.event.def.DefaultFlushEventListener.onFlush(DefaultFlushEventListener.java:51)
    at org.hibernate.impl.SessionImpl.flush(SessionImpl.java:1216)
    at org.hibernate.impl.SessionImpl.managedFlush(SessionImpl.java:383)
    at org.hibernate.transaction.JDBCTransaction.commit(JDBCTransaction.java:133)
    at com.xiaohao.test.UserTest2.main(UserTest2.java:21)

 UserTest2代码将在 tx.commit() 处抛出 StaleObjectStateException 异 常,并指出版本检查失败,当前事务正在试图提交

一个过期数据。通过捕捉这个异常,我 们就可以在乐观锁校验失败时进行相应处理

 


 3、常见并发同步案例分析

    案例一:订票系统案例,某航班只有一张机票,假定有1w个人打开你的网站来订票,问你如何解决并发问题(可扩展到任何高并发网站要考虑
               的并发读写问题)
    问题,1w个人来访问,票没出去前要保证大家都能看到有票,不可能一个人在看到票的时候别人就不能看了。到底谁能抢到,那得看这个人的“运气”(网
             络快慢等)
其次考虑的问题,并发,1w个人同时点击购买,到底谁能成交?总共只有一张票。
首先我们容易想到和并发相关的几个方案 :
锁同步同步更多指的是应用程序的层面,多个线程进来,只能一个一个的访问,java中指的是syncrinized关键字。锁也有2个层面,一个是java中谈到的对
象锁,用于线程同步;另外一个层面是数据库的锁;如果是分布式的系统,显然只能利用数据库端的锁来实现。
假定我们采用了同步机制或者数据库物理锁机制,如何保证1w个人还能同时看到有票,显然会牺牲性能,在高并发网站中是不可取的。使用hibernate后我们
提出了另外一个概念:乐观锁、悲观锁(即传统的物理锁);
采用乐观锁即可解决此问题。乐观锁意思是不锁定表的情况下,利用业务的控制来解决并发问题,这样即保证数据的并发可读性又保证保存数据的排他性,保
证性能的同时解决了并发带来的脏数据问题。
hibernate中如何实现乐观锁:
前提:在现有表当中增加一个冗余字段,version版本号, long类型
原理:
1)只有当前版本号》=数据库表版本号,才能提交
2)提交成功后,版本号version ++
实现很简单:在ormapping增加一属性optimistic-lock=”version”即可,以下是样例片段


案例二、股票交易系统、银行系统,大数据量你是如何考虑的

首先,股票交易系统的行情表,每几秒钟就有一个行情记录产生,一天下来就有(假定行情3秒一个) 股票数量×20×60*6 条记录,一月下来这个表记录数

量多大? oracle中一张表的记录数超过100w后 查询性能就很差了,如何保证系统性能?

再比如,中国移动有上亿的用户量,表如何设计?把所有用于存在于一个表么?

所以,大数量的系统,必须考虑拆分表(表名字不一样,表结构一样),通用的拆分方式有以下几种,视情况区别

1、按业务分,比如 手机号的表,我们可以考虑 130开头的作为一个表,131开头的另外一张表 以此类推

2、利用oracle表拆分机制做分表

3、如果是交易系统,我们可以考虑按时间轴拆分,当日数据一个表,历史数据一个表,历史数据的报表和查询不会影响当日的交易

当然,表拆分之后我们的应用也应做相应的调整,单纯的or-mapping可能要改动,比如部分业务通过存储过程等。

此外,我们还得考虑缓存

这里的缓存不是hibernate的一级二级缓存,而是独立于应用的,依然是内存的读取,如果可以减少与数据库的交互,可以大大的减小数据库的压力,

比如一个电子商务系统的商品搜索,可以考虑将经常搜索的商品列表放到缓存中,这样可以极大的增加性能。

简单的缓存大家可以理解为自己做一个hashmap,把常访问的数据做一个key,value是第一次从数据库搜索出来的值,下次访问

就可以从map里读取,而不读数据库;专业些的目前有独立的缓存框架比如memcached 等,可独立部署成一个缓存服务器。


4、常见的提高高并发下访问效率的手段

首先先了解高并发的瓶颈所在

1、网络带宽不够

2、web线程连接数不足

3、数据库连接查询太慢

根据不同的情况可用以下的方式应对

1、增加网络带宽,dns域名解析分发多台服务器

2、负载均衡,前置代理服务器如Nginx,Apache等等

3、数据库查询优化,分表,读写分离等等

 最后复制一些在高并发下面需要常常需要处理的内容:

尽量使用缓存,包括用户缓存、信息缓存,多花点内存做缓存,减少与数据库的交互,提交性能

用jprofiler等工具找出性能瓶颈,减少额外的开销。

优化数据库查询语句,减少直接使用hibernate等工具的直接生成语句(仅耗时较长的查询做优化)

优化数据库结构,多做索引,提高查询效率

统计的功能尽量做缓存,或按每天一统计或定时统计相关报表,避免需要时进行统计的功能。

能使用静态页面的地方尽量使用,减少容器的解析(尽量将动态内容生成静态html来显示)。

解决以上问题后,使用服务器集群来解决单台的瓶颈问题。


———————-java高并发 如何解决  用什么方式解决——————–

高并发的解决方式主要有两种:

1、使用缓存

2、使用静态页面

还有就是从最基础的地方优化我们减少写代码不必要的资源浪费

1、不要频繁的new对象,对于在应用中只需要存在一个实例的类采用单例模式,对于String的连接使用

StringBulider或者StringBuffer,对于工具类采用静态方法访问

2、避免使用错误的方式,如Exception可以控制方法推出,但是Exception要保留stacktrace消耗性能,除非必

     要不要使用 instanceof做条件判断,尽量使用比的条件判断方式.使用JAVA中效率高的类,比如ArrayList比Vector性能好。)


首先缓存技术我一直没有使用过,我觉得应该是在用户请求时将数据保存在缓存中,下次请求时会检测缓存中是否有数据存在,防止多次请求服务器,导致服务器性能降低,严重导致服务器崩溃,这只是我自己的理解,详细的资料还是需要在网上收集;

 

使用生成静态页面我想大家应该不模式,我们见过很多网站当在请求的时候页面的后最已经变了,如“http://developer.51cto.com/art/201207/348766.htm”该页面其实是一个服务器请求地址,在转换成htm后,访问速度将提升,因为静态页面不带有服务器组件;在这里我就多多介绍一下:

一、什么是页面静态化:

简 单的说,我们如果访问一个链接 ,服务器对应的模块会处理这个请求,转到对应的jsp界面,最后生成我们想要看到的数据。这其中的缺点是显而易见的:因为每次请求服务器都会进行处理,如 果有太多的高并发请求,那么就会加重应用服务器的压力,弄不好就把服务器 搞down 掉了。那么如何去避免呢?如果我们把对 test.do 请求后的结果保存成一个 html 文件,然后每次用户都去访问 ,这样应用服务器的压力不就减少了?

那么静态页面从哪里来呢?总不能让我们每个页面都手动处理吧?这里就牵涉到我们要讲解的内容了,静态页面生成方案… 我们需要的是自动的生成静态页面,当用户访问 ,会自动生成 test.html ,然后显示给用户。

二、下面我们在简单介绍一下要想掌握页面静态化方案应该掌握的知识点:

1、 基础- URL Rewrite

什么是 URL Rewrite 呢 ? URL 重写。用一个简单的例子来说明问题:输入网址 ,但是实际上访问的却是 abc.com/test.action,那我们就可以说 URL 被重写了。这项技术应用广泛,有许多开源的工具可以实现这个功能。

2、 基础- Servlet web.xml

如果你还不知道 web.xml 中一个请求和一个 servlet 是如何匹配到一起的,那么请搜索一下 servlet 的文档。这可不是乱说呀,有很多人就认为 /xyz/*.do 这样的匹配方式能有效。

如果你还不知道怎么编写一个 servlet ,那么请搜索一下如何编写 servlet.这可不是说笑呀,在各种集成工具漫天飞舞的今天,很多人都不会去从零编写一个 servlet了

三、基本的方案介绍

其中,对于 URL Rewriter的部分,可以使用收费或者开源的工具来实现,如果 url不是特别的复杂,可以考虑在 servlet 中实现,那么就是下面这个样子:

 

 
总 结:其实我们在开发中都很少考虑这种问题,直接都是先将功能实现,当一个程序员在干到1到2年,就会感觉光实现功能不是最主要的,安全性能、质量等等才是 一个开发人员最该关心的。今天我所说的是高并发。
我的解决思路是:
1、采用分布式应用设计
2、分布式缓存数据库
3、代码优化


Java高并发的例子:

具体情况是这样: 通过java和数据库,自己实现序列自动增长。
实现代码大致如下:
 id_table表结构, 主要字段:

 id_name  varchar2(16);
 id_val  number(16,0);
 id_prefix  varchar2(4);
   


//操作DB 
   public synchronized String nextStringValue(String id){
        SqlSession sqlSess = SqlSessionUtil.getSqlSession();
        sqlSess.update("update id_table set id_val = id_val + 1 where id_name="+id);
        Map map = sqlSess.getOne("select id_name, id_prefix, id_val from id_table where id_name="+ id);
        BigDecimal val = (BigDecimal) map.get("id_val");
      //id_val是具体数字,rePack主要是统一返回固定长度的字符串;如:Y0000001, F0000001, T0000001等
        String idValue = rePack(val, map); 
        return idValue;
  }

  //公共方法
public class IdHelpTool{
     public static String getNextStringValue(String idName){
          return getXX().nextStringValue(idName);
    }
}

具体使用者,都是通过类似这种方式:IdHelpTool.getNextStringValue(“PAY_LOG”);来调用。

问题:
      (1) 当出现并发时, 有时会获取重复的ID;
      (2) 由于服务器做了相关一些设置,有时调用这个方法,好像还会导致超时。

         为了解决问题(1), 考虑过在方法getNextStringValue上,也加上synchronized , 同步关键字过多,会不会更导致超时?
跪求大侠提供个解决问题的大概思路!!!

解决思路一:

1、推荐 https://github.com/adyliu/idcenter
2、可以通过第三方redis来实现。

 

解决思路一:

1、出现重复ID,是因为脏读了,并发的时候不加 synchronized  比如会出现问题

2、但是加了 synchronized  ,性能急剧下降了,本身 java 就是多线程的,你把它单线程使用,不是明智的选择,同时,如果分布式部署的时候,加了 synchronized  也无法控制并发

3、调用这个方法,出现超时的情况,说明你的并发已经超过了数据库所能处理的极限,数据库无限等待导致超时

基于上面的分析,建议采用线程池的方案,支付宝的单号就是用的线程池的方案进行的。

数据库 update 不是一次加1,而是一次加几百甚至上千,然后取到的这 1000个序号,放在线程池里慢慢分配即可,能应付任意大的并发,同时保证数据库没任何压力。


你可能感兴趣的:(java基础)