如何用Python批量提取PDF文本内容?

本文为你展示,如何用Python把许多PDF文件的文本内容批量提取出来,并且整理存储到数据框中,以便于后续的数据分析。

如何用Python批量提取PDF文本内容?_第1张图片

(由于微信公众号外部链接的限制,文中的部分链接可能无法正确打开。如有需要,请点击文末的“阅读原文”按钮,访问可以正常显示外链的版本。)

问题

最近,读者们在后台的留言,愈发五花八门了。

写了几篇关于自然语言处理的文章后,一种呼声渐强:

老师,pdf中的文本内容,有没有什么方便的方法提取出来呢?

我能体会到读者的心情。

我展示的例子中,文本数据都是直接可以读入数据框工具做处理的。它们可能来自开放数据集合、网站API,或者爬虫。

但是,有的时候,你会遇到需要处理指定格式数据的问题。

例如pdf。

许多的学术论文、研究报告,甚至是资料分享,都采用这种格式发布。

这时候,已经掌握了诸多自然语言分析工具的你,会颇有“拔剑四顾心茫然”的感觉——明明知道如何处理其中的文本信息,但就是隔着一个格式转换的问题,做不来。

怎么办?

办法自然是有的,例如专用工具、在线转换服务网站,甚至还可以手动复制粘贴嘛。

但是,咱们是看重效率的,对不对?

上述办法,有的需要在网上传输大量内容,花费时间较多,而且可能带来安全和隐私问题;有的需要专门花钱购买;有的干脆就不现实。

怎么办?

好消息是,Python就可以帮助你高效、快速地批量提取pdf文本内容,而且和数据整理分析工具无缝衔接,为你后续的分析处理做好基础服务工作。

本文给你详细展示这一过程。

想不想试试?

数据

为了更好地说明流程,我为你准备好了一个压缩包。

里面包括本教程的代码,以及我们要用到的数据。

请你到 这个网址 下载本教程配套的压缩包。

下载后解压,你会在生成的目录(下称“演示目录”)里面看到以下内容。

如何用Python批量提取PDF文本内容?_第2张图片

演示目录里面包含:

  • Pipfile: pipenv 配置文件,用来准备咱们变成需要用到的依赖包。后文会讲解使用方法;

  • pdf_extractor.py: 利用pdfminer.six编写的辅助函数。有了它你就可以直接调用pdfminer提供的pdf文本内容抽取功能,而不必考虑一大堆恼人的参数;

  • demo.ipynb: 已经为你写好的本教程 Python 源代码 (Jupyter Notebook格式)。

另外,演示目录中还包括了2个文件夹。

这两个文件夹里面,都是中文pdf文件,用来给你展示pdf内容抽取。它们都是我几年前发表的中文核心期刊论文。

这里做2点说明:

  1. 使用我自己的论文做示例,是因为我怕用别人的论文做文本抽取,会与论文作者及数据库运营商之间有知识产权的纠纷;

  2. 分成2个文件夹,是为了向你展示添加新的pdf文件时,抽取工具会如何处理。

pdf文件夹内容如下:

如何用Python批量提取PDF文本内容?_第3张图片

newpdf文件夹内容如下:

如何用Python批量提取PDF文本内容?_第4张图片

数据准备好了,下面我们来部署代码运行环境。

环境

要安装Python,比较省事的办法是装Anaconda套装。

请到 这个网址 下载Anaconda的最新版本。

如何用Python批量提取PDF文本内容?_第5张图片

请选择左侧的 Python 3.6 版本下载安装。

如果你需要具体的步骤指导,或者想知道Windows平台如何安装并运行Anaconda命令,请参考我为你准备的 视频教程 。

安装好Anaconda之后,打开终端,用cd命令进入演示目录

如果你不了解具体使用方法,也可以参考 视频教程 。

我们需要安装一些环境依赖包。

首先执行:

pip install pipenv 

这里安装的,是一个优秀的 Python 软件包管理工具 pipenv 。
安装后,请执行:

pipenv install --skip-lock 

pipenv 工具会依照Pipfile,自动为我们安装所需要的全部依赖软件包。

终端里面会有进度条,提示所需安装软件数量和实际进度。

装好后,根据提示我们执行:

pipenv shell 

这样,我们就进入本教程专属的虚拟运行环境了。

注意一定要执行下面这句:

python -m ipykernel install --user --name=py36 

只有这样,当前的Python环境才会作为核心(kernel)在系统中注册,并且命名为py36。

此处请确认你的电脑上已经安装了 Google Chrome 浏览器。

我们执行:

jupyter notebook 

默认浏览器(Google Chrome)会开启,并启动 Jupyter 笔记本界面:

如何用Python批量提取PDF文本内容?_第6张图片

你可以直接点击文件列表中的第一项ipynb文件,可以看到本教程的全部示例代码。

你可以一边看教程的讲解,一边依次执行这些代码。

如何用Python批量提取PDF文本内容?_第7张图片

但是,我建议的方法,是回到主界面下,新建一个新的空白 Python 3 笔记本(显示名称为 py36 的那个)。

如何用Python批量提取PDF文本内容?_第8张图片

请跟着教程,一个个字符输入相应的内容。这可以帮助你更为深刻地理解代码的含义,更高效地把技能内化。

如何用Python批量提取PDF文本内容?_第9张图片

当你在编写代码中遇到困难的时候,可以返回参照 demo.ipynb 文件。

准备工作结束,下面我们开始正式输入代码。

代码

首先,我们读入一些模块,以进行文件操作。

import glob
import os

前文提到过,演示目录下,有两个文件夹,分别是pdf和newpdf。

我们指定 pdf 文件所在路径为其中的pdf文件夹。

pdf_path = "pdf/"

我们希望获得所有 pdf 文件的路径。用glob,一条命令就能完成这个功能。

pdfs = glob.glob("{}/*.pdf".format(pdf_path))

看看我们获得的 pdf 文件路径是否正确。

pdfs
['pdf/复杂系统仿真的微博客虚假信息扩散模型研究.pdf',
'pdf/面向影子分析的社交媒体竞争情报搜集.pdf',
'pdf/面向人机协同的移动互联网政务门户探析.pdf']

经验证。准确无误。

下面我们利用 pdfminer 来从 pdf 文件中抽取内容。我们需要从辅助 Python 文件 pdf_extractor.py 中读入函数 extract_pdf_content

from pdf_extractor import extract_pdf_content

用这个函数,我们尝试从 pdf 文件列表中的第一篇里,抽取内容,并且把文本保存在 content 变量里。

content = extract_pdf_content(pdfs[0])

我们看看 content 里都有什么:

content
如何用Python批量提取PDF文本内容?_第10张图片

显然,内容抽取并不完美,页眉页脚等信息都混了进来。

不过,对于我们的许多文本分析用途来说,这无关紧要。

你会看到 content 的内容里面有许多的 \n,这是什么呢?

我们用 print 函数,来显示 content 的内容。

print(content)
如何用Python批量提取PDF文本内容?_第11张图片

可以清楚看到,那些 \n 是换行符。

通过一个 pdf 文件的抽取测试,我们建立了信心。

下面,我们该建立辞典,批量抽取和存储内容了。

mydict = {}

我们遍历 pdfs 列表,把文件名称(不包含目录)作为键值。这样,我们可以很容易看到,哪些pdf文件已经被抽取过了,哪些还没有抽取。

为了让这个过程更为清晰,我们让Python输出正在抽取的 pdf 文件名。

for pdf in pdfs:
   key = pdf.split('/')[-1]
   if not key in mydict:
       print("Extracting content from {} ...".format(pdf))
       mydict[key] = extract_pdf_content(pdf)

抽取过程中,你会看到这些输出信息:

Extracting content from pdf/复杂系统仿真的微博客虚假信息扩散模型研究.pdf ...
Extracting content from pdf/面向影子分析的社交媒体竞争情报搜集.pdf ...
Extracting content from pdf/面向人机协同的移动互联网政务门户探析.pdf ...

看看此时字典中的键值都有哪些:

mydict.keys()
dict_keys(['复杂系统仿真的微博客虚假信息扩散模型研究.pdf', '面向影子分析的社交媒体竞争情报搜集.pdf', '面向人机协同的移动互联网政务门户探析.pdf'])

一切正常。

下面我们调用pandas,把字典变成数据框,以利于分析。

import pandas as pd

下面这条语句,就可以把字典转换成数据框了。注意后面的reset_index()把原先字典键值生成的索引也转换成了普通的列。

df = pd.DataFrame.from_dict(mydict, orient='index').reset_index()

然后我们重新命名列,以便于后续使用。

df.columns = ["path", "content"]

此时的数据框内容如下:

df
640?wx_fmt=png

可以看到,我们的数据框拥有了pdf文件信息和全部文本内容。这样你就可以使用关键词抽取、情感分析、相似度计算等等诸多分析工具了。

篇幅所限,我们这里只用一个字符数量统计的例子来展示基本分析功能。

我们让 Python 帮我们统计抽取内容的长度。

df["length"] = df.content.apply(lambda x: len(x))

此时的数据框内容发生以下变化:

df
如何用Python批量提取PDF文本内容?_第12张图片

多出的一列,就是 pdf 文本内容的字符数量。

为了在 Jupyter Notebook 里面正确展示绘图结果,我们需要使用以下语句:

%matplotlib inline

下面,我们让 Pandas 把字符长度一列的信息用柱状图标示出来。为了显示的美观,我们设置了图片的长宽比例,并且把对应的pdf文件名称以倾斜45度来展示。

import matplotlib.pyplot as plt
plt.figure(figsize=(14, 6))
df.set_index('path').length.plot(kind='bar')
plt.xticks(rotation=45)
如何用Python批量提取PDF文本内容?_第13张图片

可视化分析完成。

下面我们把刚才的分析流程整理成函数,以便于将来更方便地调用。

我们先整合pdf内容提取到字典的模块:

def get_mydict_from_pdf_path(mydict, pdf_path):
   pdfs = glob.glob("{}/*.pdf".format(pdf_path))
   for pdf in pdfs:
       key = pdf.split('/')[-1]
       if not key in mydict:
           print("Extracting content from {} ...".format(pdf))
           mydict[key] = extract_pdf_content(pdf)
   return mydict

这里输入是已有词典和pdf文件夹路径。输出为新的词典。

你可能会纳闷为何还要输入“已有词典”。别着急,一会儿我用实际例子展示给你看。

下面这个函数非常直白——就是把词典转换成数据框。

def make_df_from_mydict(mydict):
   df = pd.DataFrame.from_dict(mydict, orient='index').reset_index()
   df.columns = ["path", "content"]
   return df

最后一个函数,用于绘制统计出来的字符数量。

def draw_df(df):
   df["length"] = df.content.apply(lambda x: len(x))
   plt.figure(figsize=(14, 6))
   df.set_index('path').length.plot(kind='bar')
   plt.xticks(rotation=45)

函数已经编好,下面我们来尝试一下。

还记得演示目录下有个子目录,叫做newpdf对吧?

我们把其中的2个pdf文件,移动到pdf目录下面。

这样pdf目录下面,就有了5个文件:

如何用Python批量提取PDF文本内容?_第14张图片

我们执行新整理出的3个函数。

首先输入已有的词典(注意此时里面已有3条记录),pdf文件夹路径没变化。输出是新的词典。

mydict = get_mydict_from_pdf_path(mydict, pdf_path)
Extracting content from pdf/微博客 Twitter 的企业竞争情报搜集.pdf ...
Extracting content from pdf/移动社交媒体用户隐私保护对策研究.pdf ...

注意这里的提示,原先的3个pdf文件没有被再次抽取,只有2个新pdf文件被抽取。

咱们这里一共只有5个文件,所以你直观上可能无法感受出显著的区别。

但是,假设你原先已经用几个小时,抽取了成百上千个pdf文件信息,结果你的老板又丢给你3个新的pdf文件……

如果你必须从头抽取信息,恐怕会很崩溃吧。

这时候,使用咱们的函数,你可以在1分钟之内把新的文件内容追加进去。

这差别,不小吧?

下面我们用新的词典,构建数据框。

df = make_df_from_mydict(mydict)

我们绘制新的数据框里,pdf抽取文本字符数量。结果如下:

draw_df(df)
如何用Python批量提取PDF文本内容?_第15张图片

至此,代码展示完毕。

小结

总结一下,本文为你介绍了以下知识点:

  • 如何用glob批量读取目录下指定格式的文件路径;

  • 如何用pdfminer从pdf文件中抽取文本信息;

  • 如何构建词典,存储与键值(本文中为文件名)对应的内容,并且避免重复处理数据;

  • 如何将词典数据结构轻松转换为Pandas数据框,以便于后续数据分析。

  • 如何用matplotlib和pandas自带的绘图函数轻松绘制柱状统计图形。

讨论

你之前做的数据分析工作中,遇到过需要从pdf文件抽取文本的任务吗?你是如何处理的?有没有更好的工具与方法?欢迎留言,把你的经验和思考分享给大家,我们一起交流讨论。

如果你对我的文章感兴趣,欢迎点赞,并且微信关注和置顶我的公众号“玉树芝兰”(nkwangshuyi)。

如果本文可能对你身边的亲友有帮助,也欢迎你把本文通过微博或朋友圈分享给他们。让他们一起参与到我们的讨论中来。


如果喜欢我的文章,请微信扫描下方二维码,关注并置顶我的公众号“玉树芝兰”。

如何用Python批量提取PDF文本内容?_第16张图片

如果你希望支持我继续输出更多的优质内容,欢迎微信识别下方的赞赏码,打赏本文。感谢支持!

如何用Python批量提取PDF文本内容?_第17张图片

欢迎微信扫码加入我的“知识星球”圈子。第一时间分享给你我的发现和思考,优先解答你的疑问。

如何用Python批量提取PDF文本内容?_第18张图片


你可能感兴趣的:(如何用Python批量提取PDF文本内容?)